[1] |
Kowalski RG, Hammond FM, Weintraub AH, et al. Recovery of consciousness and functional outcome in moderate and severe traumatic brain injury[J]. JAMA Neurol, 2021, 78(5): 548-557. DOI: 10.1001/jamaneurol.2021.0084.
|
[2] |
Hamilton JA, Ketchum JM, Hammond FM, et al. Comparison of veterans affairs and NIDILRR traumatic brain injury model systems participants with disorders of consciousness[J]. Brain Inj, 2023, 37(4): 282-292. DOI: 10.1080/02699052.2022.2158226.
|
[3] |
Spitz G, McKenzie D, Attwood D, et al. Cost prediction following traumatic brain injury: model development and validation[J]. J Neurol Neurosurg Psychiatry, 2016, 87(2): 173-180. DOI: 10.1136/jnnp-2014-309479.
|
[4] |
Yang Y, He Q, He J. Short-term spinal cord stimulation in treating disorders of consciousness monitored by resting-state fMRI and qEEG: the first case report[J]. Front Neurol, 2022, 13: 968932. DOI: 10.3389/fneur.2022.968932.
|
[5] |
Malinowski MN, Jain S, Jassal N, et al. Spinal cord stimulation for the treatment of neuropathic pain: expert opinion and 5-year outlook[J]. Expert Rev Med Devices, 2020, 17(12): 1293-1302. DOI: 10.1080/17434440.2020.1801411.
|
[6] |
|
[7] |
Xu Y, Li P, Zhang S, et al. Cervical spinal cord stimulation for the vegetative state: a preliminary result of 12 cases[J]. Neuromodulation, 2019, 22(3): 347-354. DOI: 10.1111/ner.12903.
|
[8] |
Zhuang Y, Yang Y, Xu L, et al. Effects of short-term spinal cord stimulation on patients with prolonged disorder of consciousness: a pilot study[J]. Front Neurol, 2022, 13: 1026221. DOI: 10.3389/fneur.2022.1026221.
|
[9] |
Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility[J]. Arch Phys Med Rehabil, 2004, 85(12): 2020-2029. DOI: 10.1016/j.apmr.2004.02.033.
|
[10] |
Owen AM. Improving diagnosis and prognosis in disorders of consciousness[J]. Brain, 2020, 143(4): 1050-1053. DOI: 10.1093/brain/awaa056.
|
[11] |
Striano P, Zara F, Minetti C. Willful modulation of brain activity in disorders of consciousness[J]. N Engl J Med, 2010, 362(20): 1937; author reply 1937-1938.
|
[12] |
Bodart O, Gosseries O, Wannez S, et al. Measures of metabolism and complexity in the brain of patients with disorders of consciousness[J]. Neuroimage Clin, 2017, 14: 354-362. DOI: 10.1016/j.nicl.2017.02.002.
|
[13] |
Gui P, Jiang Y, Zang D, et al. Assessing the depth of language processing in patients with disorders of consciousness[J]. Nat Neurosci, 2020, 23(6): 761-770. DOI: 10.1038/s41593-020-0639-1.
|
[14] |
Wijnen VJ, van Boxtel GJ, Eilander HJ, et al. Mismatch negativity predicts recovery from the vegetative state[J]. Clin Neurophysiol, 2007, 118(3): 597-605. DOI: 10.1016/j.clinph.2006.11.020.
|
[15] |
Comanducci A, Boly M, Claassen J, et al. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group[J]. Clin Neurophysiol, 2020, 131(11): 2736-2765. DOI: 10.1016/j.clinph.2020.07.015.
|
[16] |
Curley WH, Bodien YG, Zhou DW, et al. Electrophysiological correlates of thalamocortical function in acute severe traumatic brain injury[J]. Cortex, 2022, 152: 136-152. DOI: 10.1016/j.cortex.2022.04.007.
|
[17] |
Guerra A, Costantini EM, Maatta S, et al. Disorders of consciousness and electrophysiological treatment strategies: a review of the literature and new perspectives[J]. Curr Pharm Des, 2014, 20(26): 4248-4267. DOI: 10.2174/13816128113196660648.
|
[18] |
Bai Y, Xia X, Liang Z, et al. Frontal connectivity in EEG gamma (30-45 Hz) respond to spinal cord stimulation in minimally conscious state patients[J]. Front Cell Neurosci, 2017, 11: 177-189. DOI: 10.3389/fncel.2017.00177.
|
[19] |
Zhang Y, Yang Y, Si J, et al. Influence of inter-stimulus interval of spinal cord stimulation in patients with disorders of consciousness: a preliminary functional near-infrared spectroscopy study[J]. Neuroimage Clin, 2018, 17: 1-9. DOI: 10.1016/j.nicl.2017.09.017.
|
[20] |
He Q, Han B, Xia X, et al. Related factors and outcome of spinal cord stimulation electrode deviation in disorders of consciousness[J]. Front Neurol, 2022, 13: 947464. DOI: 10.3389/fneur.2022.947464.
|
[21] |
De Agostino R, Federspiel B, Cesnulis E, et al. High-cervical spinal cord stimulation for medically intractable chronic migraine[J]. Neuromodulation, 2015, 18(4): 289-296; discussion 296. DOI: 10.1111/ner.12236.
|
[22] |
Chan AK, Winkler EA, Jacques L. Rate of perioperative neurological complications after surgery for cervical spinal cord stimulation[J]. J Neurosurg Spine, 2016, 25(1): 31-38. DOI: 10.3171/2015.10.SPINE15670.
|
[23] |
Patel SK, Gozal YM, Saleh MS, et al. Spinal cord stimulation failure: evaluation of factors underlying hardware explantation[J]. J Neurosurg Spine, 2019: 1-6. DOI: 10.3171/2019.6.SPINE181099.
|
[24] |
Hosobuchi Y. Electrical stimulation of the cervical spinal cord increases cerebral blood flow in humans[J]. Appl Neurophysiol, 1985, 48(1-6): 372-376. DOI: 10.1159/000101161.
|
[25] |
Liu JT, Tan WC, Liao WJ. Effects of electrical cervical spinal cord stimulation on cerebral blood perfusion, cerebrospinal fluid catecholamine levels, and oxidative stress in comatose patients[J]. Acta Neurochir Suppl, 2008, 101: 71-76. DOI: 10.1007/978-3-211-78205-7_12.
|
[26] |
Clavo B, Robaina F, Catalá L, et al. Cerebral blood flow increase in cancer patients by applying cervical spinal cord stimulation[J]. Neurocirugia (Astur), 2007, 18(1): 28-32; discussion 33-25. DOI: 10.1016/s1130-1473(07)70305-6.
|
[27] |
Zhao S, Sufianova G, Shapkin A, et al. Improvement of brain perfusion in patients with chronic brain ischemia at epidural spinal cord electrical stimulation[J]. Front Surg, 2022, 9: 1026079. DOI: 10.3389/fsurg.2022.1026079.
|
[28] |
Garcia-March G, Sánchez-Ledesma MJ, Anaya J, et al. Cerebral and carotid haemodynamic changes following cervical spinal cord stimulation. An experimental study[J]. Acta Neurochir Suppl (Wien), 1989, 46: 102-104. DOI: 10.1007/978-3-7091-9029-6_25.
|
[29] |
Lee JY, Huang DL, Keep R, et al. Effect of electrical stimulation of the cervical spinal cord on blood flow following subarachnoid hemorrhage[J]. J Neurosurg, 2008, 109(6): 1148-1154. DOI: 10.3171/JNS.2008.109.12.1148.
|
[30] |
Sagher O, Huang DL. Mechanisms of spinal cord stimulation in ischemia[J]. Neurosurg Focus, 2006, 21(6): E2. DOI: 10.3171/foc.2006.21.6.5.
|
[31] |
Wu M, Komori N, Qin C, et al. Roles of peripheral terminals of transient receptor potential vanilloid-1 containing sensory fibers in spinal cord stimulation-induced peripheral vasodilation[J]. Brain Res, 2007, 1156: 80-92. DOI: 10.1016/j.brainres.2007.04.065.
|
[32] |
Choi YH, Lee SU. Enhancement of brain plasticity and recovery of locomotive function after lumbar spinal cord stimulation in combination with gait training with partial weight support in rats with cerebral ischemia[J]. Brain Res, 2017, 1662: 31-38. DOI: 10.1016/j.brainres.2017.02.017.
|
[33] |
Li H, Dong X, Yang Y, et al. The neuroprotective mechanism of spinal cord stimulation in spinal cord ischemia/reperfusion injury[J]. Neuromodulation, 2021, 24(1): 43-48. DOI: 10.1111/ner.13113.
|
[34] |
|
[35] |
Kuwata T. Effects of the cervical spinal cord stimulation on persistent vegetative syndrome: experimental and clinical study[J]. No Shinkei Geka, 1993, 21(4): 325-331.
|
[36] |
Liang Z, Li J, Xia X, et al. Long-range temporal correlations of patients in minimally conscious state modulated by spinal cord stimulation[J]. Front Physiol, 2018, 9: 1511. DOI: 10.3389/fphys.2018.01511.
|
[37] |
|
[38] |
梁振虎,任娜,王勇,等.基于互样本熵脑网络的脊髓电刺激下微意识状态患者脑功能评估[J].中国科学(信息科学), 2021, 51(6): 940-958.
|
[39] |
Kriek N, Schreurs MWJ, Groeneweg JG, et al. Spinal cord stimulation in patients with complex regional pain syndrome: a possible target for immunomodulation?[J]. Neuromodulation, 2018, 21(1): 77-86. DOI: 10.1111/ner.12704.
|
[40] |
Kuwahara K, Sasaki T, Yasuhara T, et al. Long-term continuous cervical spinal cord stimulation exerts neuroprotective effects in experimental Parkinson's disease[J]. Front Aging Neurosci, 2020, 12: 164. DOI: 10.3389/fnagi.2020.00164.
|