切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2023, Vol. 09 ›› Issue (03) : 129 -134. doi: 10.3877/cma.j.issn.2095-9141.2023.03.001

述评

颈段脊髓电刺激治疗颅脑损伤后慢性意识障碍的进展
张永明()   
  1. 230041 合肥,安徽省第二人民医院神经外科
  • 收稿日期:2023-05-19 出版日期:2023-06-15
  • 通信作者: 张永明
  • 基金资助:
    安徽省重点研究和开发计划项目(201904a07020108); 安徽省高校自然科学研究重点项目(KJ2020A0851)

Progress in the treatment of chronic consciousness disorders after traumatic brain injury with cervical spinal cord electrical stimulation

Yongming Zhang()   

  1. Department of Neurosurgery, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
  • Received:2023-05-19 Published:2023-06-15
  • Corresponding author: Yongming Zhang
  • Supported by:
    Key Research and Development Projects in Anhui Province(201904a07020108); Key Project of Natural Science Research in Universities of Anhui Province(KJ2020A0851)
引用本文:

张永明. 颈段脊髓电刺激治疗颅脑损伤后慢性意识障碍的进展[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(03): 129-134.

Yongming Zhang. Progress in the treatment of chronic consciousness disorders after traumatic brain injury with cervical spinal cord electrical stimulation[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(03): 129-134.

创伤性颅脑损伤(TBI)是一个全球性的公共卫生问题,慢性意识障碍是TBI后的常见严重并发症。颈段脊髓电刺激(cSCS)已被证明是治疗TBI后意识障碍的有效方法,可直接调节意识障碍患者的觉醒水平。本文主要对cSCS的临床应用(包括术前综合性评估、术后程控、刺激参数的选择、术后并发症)以及cSCS治疗慢性意识障碍的可能机制作一述评。

Traumatic brain injury (TBI) is a global public health problem, with chronic cognitive impairment being a common serious complication after TBI. Cervical spinal cord stimulation (cSCS) has been proven to be an effective method for treating consciousness disorders after TBI, aiming to more directly regulate the awakening level of patients with consciousness disorders. This article mainly reviews the clinical application of cSCS (including preoperative comprehensive evaluation, postoperative programming, selection of stimulation parameters, and postoperative complications), as well as the possible mechanisms of cSCS treatment for chronic consciousness disorders.

[1]
Kowalski RG, Hammond FM, Weintraub AH, et al. Recovery of consciousness and functional outcome in moderate and severe traumatic brain injury[J]. JAMA Neurol, 2021, 78(5): 548-557. DOI: 10.1001/jamaneurol.2021.0084.
[2]
Hamilton JA, Ketchum JM, Hammond FM, et al. Comparison of veterans affairs and NIDILRR traumatic brain injury model systems participants with disorders of consciousness[J]. Brain Inj, 2023, 37(4): 282-292. DOI: 10.1080/02699052.2022.2158226.
[3]
Spitz G, McKenzie D, Attwood D, et al. Cost prediction following traumatic brain injury: model development and validation[J]. J Neurol Neurosurg Psychiatry, 2016, 87(2): 173-180. DOI: 10.1136/jnnp-2014-309479.
[4]
Yang Y, He Q, He J. Short-term spinal cord stimulation in treating disorders of consciousness monitored by resting-state fMRI and qEEG: the first case report[J]. Front Neurol, 2022, 13: 968932. DOI: 10.3389/fneur.2022.968932.
[5]
Malinowski MN, Jain S, Jassal N, et al. Spinal cord stimulation for the treatment of neuropathic pain: expert opinion and 5-year outlook[J]. Expert Rev Med Devices, 2020, 17(12): 1293-1302. DOI: 10.1080/17434440.2020.1801411.
[6]
夏小雨,杨艺,党圆圆,等.脊髓电刺激术治疗颅脑创伤后慢性意识障碍的疗效分析(附110例报告)[J].中华神经外科杂志, 2019, 35(11): 1138-1142. DOI: 10.3760/cma.j.issn.1001-2346.2019.11.014.
[7]
Xu Y, Li P, Zhang S, et al. Cervical spinal cord stimulation for the vegetative state: a preliminary result of 12 cases[J]. Neuromodulation, 2019, 22(3): 347-354. DOI: 10.1111/ner.12903.
[8]
Zhuang Y, Yang Y, Xu L, et al. Effects of short-term spinal cord stimulation on patients with prolonged disorder of consciousness: a pilot study[J]. Front Neurol, 2022, 13: 1026221. DOI: 10.3389/fneur.2022.1026221.
[9]
Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility[J]. Arch Phys Med Rehabil, 2004, 85(12): 2020-2029. DOI: 10.1016/j.apmr.2004.02.033.
[10]
Owen AM. Improving diagnosis and prognosis in disorders of consciousness[J]. Brain, 2020, 143(4): 1050-1053. DOI: 10.1093/brain/awaa056.
[11]
Striano P, Zara F, Minetti C. Willful modulation of brain activity in disorders of consciousness[J]. N Engl J Med, 2010, 362(20): 1937; author reply 1937-1938.
[12]
Bodart O, Gosseries O, Wannez S, et al. Measures of metabolism and complexity in the brain of patients with disorders of consciousness[J]. Neuroimage Clin, 2017, 14: 354-362. DOI: 10.1016/j.nicl.2017.02.002.
[13]
Gui P, Jiang Y, Zang D, et al. Assessing the depth of language processing in patients with disorders of consciousness[J]. Nat Neurosci, 2020, 23(6): 761-770. DOI: 10.1038/s41593-020-0639-1.
[14]
Wijnen VJ, van Boxtel GJ, Eilander HJ, et al. Mismatch negativity predicts recovery from the vegetative state[J]. Clin Neurophysiol, 2007, 118(3): 597-605. DOI: 10.1016/j.clinph.2006.11.020.
[15]
Comanducci A, Boly M, Claassen J, et al. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group[J]. Clin Neurophysiol, 2020, 131(11): 2736-2765. DOI: 10.1016/j.clinph.2020.07.015.
[16]
Curley WH, Bodien YG, Zhou DW, et al. Electrophysiological correlates of thalamocortical function in acute severe traumatic brain injury[J]. Cortex, 2022, 152: 136-152. DOI: 10.1016/j.cortex.2022.04.007.
[17]
Guerra A, Costantini EM, Maatta S, et al. Disorders of consciousness and electrophysiological treatment strategies: a review of the literature and new perspectives[J]. Curr Pharm Des, 2014, 20(26): 4248-4267. DOI: 10.2174/13816128113196660648.
[18]
Bai Y, Xia X, Liang Z, et al. Frontal connectivity in EEG gamma (30-45 Hz) respond to spinal cord stimulation in minimally conscious state patients[J]. Front Cell Neurosci, 2017, 11: 177-189. DOI: 10.3389/fncel.2017.00177.
[19]
Zhang Y, Yang Y, Si J, et al. Influence of inter-stimulus interval of spinal cord stimulation in patients with disorders of consciousness: a preliminary functional near-infrared spectroscopy study[J]. Neuroimage Clin, 2018, 17: 1-9. DOI: 10.1016/j.nicl.2017.09.017.
[20]
He Q, Han B, Xia X, et al. Related factors and outcome of spinal cord stimulation electrode deviation in disorders of consciousness[J]. Front Neurol, 2022, 13: 947464. DOI: 10.3389/fneur.2022.947464.
[21]
De Agostino R, Federspiel B, Cesnulis E, et al. High-cervical spinal cord stimulation for medically intractable chronic migraine[J]. Neuromodulation, 2015, 18(4): 289-296; discussion 296. DOI: 10.1111/ner.12236.
[22]
Chan AK, Winkler EA, Jacques L. Rate of perioperative neurological complications after surgery for cervical spinal cord stimulation[J]. J Neurosurg Spine, 2016, 25(1): 31-38. DOI: 10.3171/2015.10.SPINE15670.
[23]
Patel SK, Gozal YM, Saleh MS, et al. Spinal cord stimulation failure: evaluation of factors underlying hardware explantation[J]. J Neurosurg Spine, 2019: 1-6. DOI: 10.3171/2019.6.SPINE181099.
[24]
Hosobuchi Y. Electrical stimulation of the cervical spinal cord increases cerebral blood flow in humans[J]. Appl Neurophysiol, 1985, 48(1-6): 372-376. DOI: 10.1159/000101161.
[25]
Liu JT, Tan WC, Liao WJ. Effects of electrical cervical spinal cord stimulation on cerebral blood perfusion, cerebrospinal fluid catecholamine levels, and oxidative stress in comatose patients[J]. Acta Neurochir Suppl, 2008, 101: 71-76. DOI: 10.1007/978-3-211-78205-7_12.
[26]
Clavo B, Robaina F, Catalá L, et al. Cerebral blood flow increase in cancer patients by applying cervical spinal cord stimulation[J]. Neurocirugia (Astur), 2007, 18(1): 28-32; discussion 33-25. DOI: 10.1016/s1130-1473(07)70305-6.
[27]
Zhao S, Sufianova G, Shapkin A, et al. Improvement of brain perfusion in patients with chronic brain ischemia at epidural spinal cord electrical stimulation[J]. Front Surg, 2022, 9: 1026079. DOI: 10.3389/fsurg.2022.1026079.
[28]
Garcia-March G, Sánchez-Ledesma MJ, Anaya J, et al. Cerebral and carotid haemodynamic changes following cervical spinal cord stimulation. An experimental study[J]. Acta Neurochir Suppl (Wien), 1989, 46: 102-104. DOI: 10.1007/978-3-7091-9029-6_25.
[29]
Lee JY, Huang DL, Keep R, et al. Effect of electrical stimulation of the cervical spinal cord on blood flow following subarachnoid hemorrhage[J]. J Neurosurg, 2008, 109(6): 1148-1154. DOI: 10.3171/JNS.2008.109.12.1148.
[30]
Sagher O, Huang DL. Mechanisms of spinal cord stimulation in ischemia[J]. Neurosurg Focus, 2006, 21(6): E2. DOI: 10.3171/foc.2006.21.6.5.
[31]
Wu M, Komori N, Qin C, et al. Roles of peripheral terminals of transient receptor potential vanilloid-1 containing sensory fibers in spinal cord stimulation-induced peripheral vasodilation[J]. Brain Res, 2007, 1156: 80-92. DOI: 10.1016/j.brainres.2007.04.065.
[32]
Choi YH, Lee SU. Enhancement of brain plasticity and recovery of locomotive function after lumbar spinal cord stimulation in combination with gait training with partial weight support in rats with cerebral ischemia[J]. Brain Res, 2017, 1662: 31-38. DOI: 10.1016/j.brainres.2017.02.017.
[33]
Li H, Dong X, Yang Y, et al. The neuroprotective mechanism of spinal cord stimulation in spinal cord ischemia/reperfusion injury[J]. Neuromodulation, 2021, 24(1): 43-48. DOI: 10.1111/ner.13113.
[34]
夏小雨,杨艺,何江弘.脊髓电刺激治疗意识障碍[J].中华神经创伤外科电子杂志, 2015, 1(4): 61-62. DOI: 10.3877/cma.j.issn.2095-9141.2015.04.016.
[35]
Kuwata T. Effects of the cervical spinal cord stimulation on persistent vegetative syndrome: experimental and clinical study[J]. No Shinkei Geka, 1993, 21(4): 325-331.
[36]
Liang Z, Li J, Xia X, et al. Long-range temporal correlations of patients in minimally conscious state modulated by spinal cord stimulation[J]. Front Physiol, 2018, 9: 1511. DOI: 10.3389/fphys.2018.01511.
[37]
夏小雨,黄永志,白洋,等.脊髓电刺激频率对意识障碍患者脑电的影响(附四例报告)[J].中华神经外科杂志, 2016, 32(6): 566-568. DOI: 10.3760/cma.j.issn.1001-2346.2016.06.007.
[38]
梁振虎,任娜,王勇,等.基于互样本熵脑网络的脊髓电刺激下微意识状态患者脑功能评估[J].中国科学(信息科学), 2021, 51(6): 940-958.
[39]
Kriek N, Schreurs MWJ, Groeneweg JG, et al. Spinal cord stimulation in patients with complex regional pain syndrome: a possible target for immunomodulation?[J]. Neuromodulation, 2018, 21(1): 77-86. DOI: 10.1111/ner.12704.
[40]
Kuwahara K, Sasaki T, Yasuhara T, et al. Long-term continuous cervical spinal cord stimulation exerts neuroprotective effects in experimental Parkinson's disease[J]. Front Aging Neurosci, 2020, 12: 164. DOI: 10.3389/fnagi.2020.00164.
[1] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[2] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[3] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[4] 鹿海龙, 朱玉辐, 贺雪凤, 蔡廷江, 王栋, 朱圣玲, 张恩刚, 王策. 创伤性颅脑损伤二次手术的危险因素分析及预警模型构建[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 97-101.
[5] 王如海, 韩超, 于强, 胡海成, 孙菲琳, 杨震. 重型创伤性脑损伤患者术后慢性意识障碍的危险因素及其预测价值[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 78-83.
[6] 刘彪, 巍山, 关永胜. 基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 22-27.
[7] 唐春雨, 李倩, 郭姗姗, 叶奇, 张丹. 创伤性颅脑损伤神经生理学特征[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 367-371.
[8] 聂玉金, 曹培成. 创伤性颅脑损伤患者保守治疗发生脑积水的危险因素分析[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 355-359.
[9] 潘立, 谢理政, 程宏伟, 茆翔. 创伤性颅脑损伤后垂体功能减退[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(05): 308-312.
[10] 张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.
[11] 王景景, 符锋, 李建伟, 任党利, 陈翀, 刘慧, 孙洪涛, 涂悦. 针刺对中型创伤性颅脑损伤后BDNF/TrkB信号通路的影响[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(04): 199-205.
[12] 贾素英, 李倩, 郭姗姗. 创伤性颅脑损伤后血小板功能障碍的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(03): 180-185.
[13] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
[14] 景方坤, 李岩峰. 颅脑创伤后慢性意识障碍促醒外科治疗的现状与展望[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 129-132.
[15] 杨新宇, 彭建文, 李辉萍, 陶希, 方翠霓, 宋涛. 脑电非线性分析在卒中后意识障碍的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 185-190.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?