[1] |
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295.
|
[2] |
Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury[J]. Curr Neuropharmacol, 2018, 16(8): 1224-1238.
|
[3] |
Schaeffer S, Iadecola C. Revisiting the neurovascular unit[J]. Nat Neurosci, 2021, 24(9): 1198-1209.
|
[4] |
Baker TL, Agoston DV, Brady RD, et al. Targeting the cerebrovascular system: next-generation biomarkers and treatment for mild traumatic brain injury[J]. Neuroscientist, 2021: 10738584211012264.
|
[5] |
Servadei F, Murray GD, Teasdale GM, et al. Traumatic subarachnoid hemorrhage: demographic and clinical study of 750 patients from the European brain injury consortium survey of head injuries[J]. Neurosurgery, 2002, 50(2): 261-267; discussion 267-269.
|
[6] |
Yuan Q, Zhang D, Wu S, et al. FVIIa prevents the progressive hemorrhaging of a brain contusion by protecting microvessels via formation of the TF-FVIIa-FXa complex[J]. Neuroscience, 2017, 348: 114-125.
|
[7] |
Samuels JM, Moore EE, Silliman CC, et al. Severe traumatic brain injury is associated with a unique coagulopathy phenotype[J]. J Trauma Acute Care Surg, 2019, 86(4): 686-693.
|
[8] |
Zhang J, Zhang F, Dong JF. Coagulopathy induced by traumatic brain injury: systemic manifestation of a localized injury[J]. Blood, 2018, 131(18): 2001-2006.
|
[9] |
Harhangi BS, Kompanje EJ, Leebeek FW, et al. Coagulation disorders after traumatic brain injury[J]. Acta Neurochir (Wien), 2008, 150(2): 165-175; discussion 175.
|
[10] |
Nakae R, Takayama Y, Kuwamoto K, et al. Time course of coagulation and fibrinolytic parameters in patients with traumatic brain injury[J]. J Neurotrauma, 2016, 33(7): 688-695.
|
[11] |
张建宁.颅脑创伤后脑水肿机制的研究进展[J].中华神经创伤外科电子杂志, 2020, 6(5): 257-258.
|
[12] |
Unterberg AW, Stover J, Kress B, et al. Edema and brain trauma[J]. Neuroscience, 2004, 129(4): 1021-1029.
|
[13] |
Battaglini D, Anania P, Rocco PRM, et al. Escalate and de-escalate therapies for intracranial pressure control in traumatic brain injury[J]. Front Neurol, 2020, 11: 564751.
|
[14] |
Kozler P, Maresova D, Pokorny J. Cytotoxic brain edema induced by water intoxication and vasogenic brain edema induced by osmotic BBB disruption lead to distinct pattern of ICP elevation during telemetric monitoring in freely moving rats[J]. Neuro Endocrinol Lett, 2019, 40(6): 249-256.
|
[15] |
Rangel-Castilla L, Gasco J, Nauta HJ, et al. Cerebral pressure autoregulation in traumatic brain injury[J]. Neurosurg Focus, 2008, 25(4): E7.
|
[16] |
Mughal A, Sackheim AM, Sancho M, et al. Impaired capillary-to-arteriolar electrical signaling after traumatic brain injury[J]. J Cereb Blood Flow Metab, 2021, 41(6): 1313-1327.
|
[17] |
Inoue Y, Shiozaki T, Tasaki O, et al. Changes in cerebral blood flow from the acute to the chronic phase of severe head injury[J]. J Neurotrauma, 2005, 22(12): 1411-1418.
|
[18] |
Yuan J, Wang A, He Y, et al. Cordycepin attenuates traumatic brain injury-induced impairments of blood-brain barrier integrity in rats[J]. Brain Res Bull, 2016, 127: 171-176.
|
[19] |
Malik VA, Di Benedetto B. The blood-brain barrier and the EphR/Ephrin system: perspectives on a link between neurovascular and neuropsychiatric disorders[J]. Front Mol Neurosci, 2018, 11: 127.
|
[20] |
Guo F, Xu D, Lin Y, et al. Chemokine CCL2 contributes to BBB disruption via the p38 MAPK signaling pathway following acute intracerebral hemorrhage[J]. Faseb J, 2020, 34(1): 1872-1884.
|
[21] |
Xu X, Yin D, Ren H, et al. Selective NLRP3 inflammasome inhibitor reduces neuroinflammation and improves long-term neurological outcomes in a murine model of traumatic brain injury[J]. Neurobiol Dis, 2018, 117: 15-27.
|
[22] |
Rui Q, Ni H, Lin X, et al. Astrocyte-derived fatty acid-binding protein 7 protects blood-brain barrier integrity through a caveolin-1/MMP signaling pathway following traumatic brain injury[J]. Exp Neurol, 2019, 322: 113044.
|
[23] |
Xia YP, He QW, Li YN, et al. Recombinant human sonic hedgehog protein regulates the expression of ZO-1 and occludin by activating angiopoietin-1 in stroke damage[J]. PLoS One, 2013, 8(7): e68891.
|
[24] |
Utsumi H, Chiba H, Kamimura Y, et al. Expression of GFRalpha-1, receptor for GDNF, in rat brain capillary during postnatal development of the BBB[J]. Am J Physiol Cell Physiol, 2000, 279(2): C361-C368.
|
[25] |
Kong L, Wang Y, Wang XJ, et al. Retinoic acid ameliorates blood-brain barrier disruption following ischemic stroke in rats[J]. Pharmacol Res, 2015, 99: 125-136.
|
[26] |
Bake S, Okoreeh AK, Alaniz RC, et al. Insulin-like growth factor (IGF)-I modulates endothelial blood-brain barrier function in ischemic middle-aged female rats[J]. Endocrinology, 2016, 157(1): 61-69.
|
[27] |
Cao F, Jiang Y, Wu Y, et al. Apolipoprotein E-Mimetic COG1410 reduces acute vasogenic edema following traumatic brain injury[J]. J Neurotrauma, 2016, 33(2): 175-182.
|
[28] |
Argaw AT, Asp L, Zhang J, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease[J]. J Clin Invest, 2012, 122(7): 2454-2468.
|
[29] |
Shore PM, Jackson EK, Wisniewski SR, et al. Vascular endothelial growth factor is increased in cerebrospinal fluid after traumatic brain injury in infants and children[J]. Neurosurgery, 2004, 54(3): 605-611; discussion 611-602.
|
[30] |
Michinaga S, Kimura A, Hatanaka S, et al. Delayed administration of BQ788, an ETB antagonist, after experimental traumatic brain injury promotes recovery of blood-brain barrier function and a reduction of cerebral edema in mice[J]. J Neurotrauma, 2018, 35(13): 1481-1494.
|
[31] |
Yang S, Chen Y, Deng X, et al. Hemoglobin-induced nitric oxide synthase overexpression and nitric oxide production contribute to blood-brain barrier disruption in the rat[J]. J Mol Neurosci, 2013, 51(2): 352-363.
|
[32] |
Vazana U, Veksler R, Pell GS, et al. Glutamate-mediated blood-brain barrier opening: implications for neuroprotection and drug delivery[J]. J Neurosci, 2016, 36(29): 7727-7739.
|
[33] |
Lo AC, Chen AY, Hung VK, et al. Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet[J]. J Cereb Blood Flow Metab, 2005, 25(8): 998-1011.
|
[34] |
Mäe MA, He L, Nordling S, et al. Single-cell analysis of blood-brain barrier response to pericyte loss[J]. Circ Res, 2021, 128(4): e46-e62.
|
[35] |
Bhowmick S, D'Mello V, Caruso D, et al. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury[J]. Exp Neurol, 2019, 317: 260-270.
|
[36] |
Sharp CD, Hines I, Houghton J, et al. Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor[J]. Am J Physiol Heart Circ Physiol, 2003, 285(6): H2592-2598.
|
[37] |
Li M, Tian X, An R, et al. All-trans retinoic acid ameliorates the early experimental cerebral ischemia-reperfusion injury in rats by inhibiting the loss of the blood-brain barrier via the JNK/p38MAPK signaling pathway[J]. Neurochem Res, 2018, 43(6): 1283-1296.
|
[38] |
Pulido RS, Munji RN, Chan TC, et al. Neuronal activity regulates blood-brain barrier efflux transport through endothelial circadian genes[J]. Neuron, 2020, 108(5): 937-952.e937.
|
[39] |
Li Z, Xiao J, Xu X, et al. M-CSF, IL-6, and TGF-β promote generation of a new subset of tissue repair macrophage for traumatic brain injury recovery[J]. Sci Adv, 2021, 7(11): eabb6260.
|
[40] |
Aertker BM, Kumar A, Prabhakara KS, et al. Pre-injury monocyte/macrophage depletion results in increased blood-brain barrier permeability after traumatic brain injury[J]. J Neurosci Res, 2019, 97(6): 698-707.
|
[41] |
Reijerkerk A, Lakeman KA, Drexhage JA, et al. Brain endothelial barrier passage by monocytes is controlled by the endothelin system[J]. J Neurochem, 2012, 121(5): 730-737.
|
[42] |
Lutton EM, Farney SK, Andrews AM, et al. Endothelial targeted strategies to combat oxidative stress: improving outcomes in traumatic brain injury[J]. Front Neurol, 2019, 10: 582.
|
[43] |
Bhowmick S, Malat A, Caruso D, et al. Intercellular adhesion molecule-1-induced posttraumatic brain injury neuropathology in the prefrontal cortex and hippocampus leads to sensorimotor function deficits and psychological stress[J]. eNeuro, 2021, 8(4): ENEURO.0242-21.2021.
|
[44] |
Huang B, Li X. The role of Mfsd2a in nervous system diseases[J]. Front Neurosci, 2021, 15: 730534.
|
[45] |
Zhao C, Ma J, Wang Z, et al. Mfsd2a attenuates blood-brain barrier disruption after sub-arachnoid hemorrhage by inhibiting caveolae-mediated transcellular transport in rats[J]. Transl Stroke Res, 2020, 11(5): 1012-1027.
|
[46] |
Simard JM, Kahle KT, Gerzanich V. Molecular mechanisms of microvascular failure in central nervous system injury--synergistic roles of NKCC1 and SUR1/TRPM4[J]. J Neurosurg, 2010, 113(3): 622-629.
|
[47] |
Prakash R, Carmichael ST. Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury[J]. Curr Opin Neurol, 2015, 28(6): 556-564.
|
[48] |
Shlosberg D, Benifla M, Kaufer D, et al. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury[J]. Nat Rev Neurol, 2010, 6(7): 393-403.
|