切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (03) : 183 -187. doi: 10.3877/cma.j.issn.2095-9141.2022.03.010

综述

创伤性颅脑损伤后继发血管内皮细胞损伤机制的研究进展
崔文兴1, 葛顺楠1, 屈延1,()   
  1. 1. 710038 西安,唐都医院神经外科
  • 收稿日期:2021-10-26 出版日期:2022-06-15
  • 通信作者: 屈延
  • 基金资助:
    国家自然科学基金(82130038)

Research progress on the mechanism of secondary vascular endothelial cell injury after traumatic brain injury

Wenxing Cui1, Shunnan Ge1, Yan Qu1,()   

  1. 1. Department of Neurosurgery, Tangdu Hospital, Xi’an 710038, China
  • Received:2021-10-26 Published:2022-06-15
  • Corresponding author: Yan Qu
引用本文:

崔文兴, 葛顺楠, 屈延. 创伤性颅脑损伤后继发血管内皮细胞损伤机制的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 183-187.

Wenxing Cui, Shunnan Ge, Yan Qu. Research progress on the mechanism of secondary vascular endothelial cell injury after traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(03): 183-187.

创伤性颅脑损伤(TBI)是全球范围内致死致残的主要因素之一,也是导致脑血管病和神经退行性疾病的重要原因。TBI后继发性损伤(脑水肿和颅内血肿等)在原发性损伤基础上发生,与患者不良临床结局密切相关。TBI后,内皮细胞功能失调可导致外周循环系统中各组分进入脑内,进一步加重继发性损伤。最近的研究对TBI后内皮细胞损伤的机制进行了深入探讨,包括神经血管单元中内皮细胞胞内信号通路改变以及细胞间相互作用。本文对TBI后内皮细胞损伤的临床表现和临床前表现、损伤的具体分子机制作一综述,旨在为防治TBI后继发损伤提供新的治疗思路。

Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide and an important cause of cerebrovascular disease and neurodegenerative diseases. Secondary injuries (including cerebral edema, intracranial hematoma, etc.) after TBI occur on the basis of primary injuries are closely related to poor clinical outcomes. Endothelial cell dysfunction after TBI leads to further aggravation of secondary injury by promoting the entry of various components of the circulation. Recent studies have revealed the mechanisms of endothelial cell injury after TBI, including alterations of intracellular signaling pathways in the neurovascular unit and cell-to-cell interactions. This paper reviews the clinical and preclinical manifestations as well as specific molecular mechanisms of endothelial cell injury after TBI, and provides new candidating therapeutic targets for the prevention and treatment of secondary injury.

[1]
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295.
[2]
Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury[J]. Curr Neuropharmacol, 2018, 16(8): 1224-1238.
[3]
Schaeffer S, Iadecola C. Revisiting the neurovascular unit[J]. Nat Neurosci, 2021, 24(9): 1198-1209.
[4]
Baker TL, Agoston DV, Brady RD, et al. Targeting the cerebrovascular system: next-generation biomarkers and treatment for mild traumatic brain injury[J]. Neuroscientist, 2021: 10738584211012264.
[5]
Servadei F, Murray GD, Teasdale GM, et al. Traumatic subarachnoid hemorrhage: demographic and clinical study of 750 patients from the European brain injury consortium survey of head injuries[J]. Neurosurgery, 2002, 50(2): 261-267; discussion 267-269.
[6]
Yuan Q, Zhang D, Wu S, et al. FVIIa prevents the progressive hemorrhaging of a brain contusion by protecting microvessels via formation of the TF-FVIIa-FXa complex[J]. Neuroscience, 2017, 348: 114-125.
[7]
Samuels JM, Moore EE, Silliman CC, et al. Severe traumatic brain injury is associated with a unique coagulopathy phenotype[J]. J Trauma Acute Care Surg, 2019, 86(4): 686-693.
[8]
Zhang J, Zhang F, Dong JF. Coagulopathy induced by traumatic brain injury: systemic manifestation of a localized injury[J]. Blood, 2018, 131(18): 2001-2006.
[9]
Harhangi BS, Kompanje EJ, Leebeek FW, et al. Coagulation disorders after traumatic brain injury[J]. Acta Neurochir (Wien), 2008, 150(2): 165-175; discussion 175.
[10]
Nakae R, Takayama Y, Kuwamoto K, et al. Time course of coagulation and fibrinolytic parameters in patients with traumatic brain injury[J]. J Neurotrauma, 2016, 33(7): 688-695.
[11]
张建宁.颅脑创伤后脑水肿机制的研究进展[J].中华神经创伤外科电子杂志, 2020, 6(5): 257-258.
[12]
Unterberg AW, Stover J, Kress B, et al. Edema and brain trauma[J]. Neuroscience, 2004, 129(4): 1021-1029.
[13]
Battaglini D, Anania P, Rocco PRM, et al. Escalate and de-escalate therapies for intracranial pressure control in traumatic brain injury[J]. Front Neurol, 2020, 11: 564751.
[14]
Kozler P, Maresova D, Pokorny J. Cytotoxic brain edema induced by water intoxication and vasogenic brain edema induced by osmotic BBB disruption lead to distinct pattern of ICP elevation during telemetric monitoring in freely moving rats[J]. Neuro Endocrinol Lett, 2019, 40(6): 249-256.
[15]
Rangel-Castilla L, Gasco J, Nauta HJ, et al. Cerebral pressure autoregulation in traumatic brain injury[J]. Neurosurg Focus, 2008, 25(4): E7.
[16]
Mughal A, Sackheim AM, Sancho M, et al. Impaired capillary-to-arteriolar electrical signaling after traumatic brain injury[J]. J Cereb Blood Flow Metab, 2021, 41(6): 1313-1327.
[17]
Inoue Y, Shiozaki T, Tasaki O, et al. Changes in cerebral blood flow from the acute to the chronic phase of severe head injury[J]. J Neurotrauma, 2005, 22(12): 1411-1418.
[18]
Yuan J, Wang A, He Y, et al. Cordycepin attenuates traumatic brain injury-induced impairments of blood-brain barrier integrity in rats[J]. Brain Res Bull, 2016, 127: 171-176.
[19]
Malik VA, Di Benedetto B. The blood-brain barrier and the EphR/Ephrin system: perspectives on a link between neurovascular and neuropsychiatric disorders[J]. Front Mol Neurosci, 2018, 11: 127.
[20]
Guo F, Xu D, Lin Y, et al. Chemokine CCL2 contributes to BBB disruption via the p38 MAPK signaling pathway following acute intracerebral hemorrhage[J]. Faseb J, 2020, 34(1): 1872-1884.
[21]
Xu X, Yin D, Ren H, et al. Selective NLRP3 inflammasome inhibitor reduces neuroinflammation and improves long-term neurological outcomes in a murine model of traumatic brain injury[J]. Neurobiol Dis, 2018, 117: 15-27.
[22]
Rui Q, Ni H, Lin X, et al. Astrocyte-derived fatty acid-binding protein 7 protects blood-brain barrier integrity through a caveolin-1/MMP signaling pathway following traumatic brain injury[J]. Exp Neurol, 2019, 322: 113044.
[23]
Xia YP, He QW, Li YN, et al. Recombinant human sonic hedgehog protein regulates the expression of ZO-1 and occludin by activating angiopoietin-1 in stroke damage[J]. PLoS One, 2013, 8(7): e68891.
[24]
Utsumi H, Chiba H, Kamimura Y, et al. Expression of GFRalpha-1, receptor for GDNF, in rat brain capillary during postnatal development of the BBB[J]. Am J Physiol Cell Physiol, 2000, 279(2): C361-C368.
[25]
Kong L, Wang Y, Wang XJ, et al. Retinoic acid ameliorates blood-brain barrier disruption following ischemic stroke in rats[J]. Pharmacol Res, 2015, 99: 125-136.
[26]
Bake S, Okoreeh AK, Alaniz RC, et al. Insulin-like growth factor (IGF)-I modulates endothelial blood-brain barrier function in ischemic middle-aged female rats[J]. Endocrinology, 2016, 157(1): 61-69.
[27]
Cao F, Jiang Y, Wu Y, et al. Apolipoprotein E-Mimetic COG1410 reduces acute vasogenic edema following traumatic brain injury[J]. J Neurotrauma, 2016, 33(2): 175-182.
[28]
Argaw AT, Asp L, Zhang J, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease[J]. J Clin Invest, 2012, 122(7): 2454-2468.
[29]
Shore PM, Jackson EK, Wisniewski SR, et al. Vascular endothelial growth factor is increased in cerebrospinal fluid after traumatic brain injury in infants and children[J]. Neurosurgery, 2004, 54(3): 605-611; discussion 611-602.
[30]
Michinaga S, Kimura A, Hatanaka S, et al. Delayed administration of BQ788, an ETB antagonist, after experimental traumatic brain injury promotes recovery of blood-brain barrier function and a reduction of cerebral edema in mice[J]. J Neurotrauma, 2018, 35(13): 1481-1494.
[31]
Yang S, Chen Y, Deng X, et al. Hemoglobin-induced nitric oxide synthase overexpression and nitric oxide production contribute to blood-brain barrier disruption in the rat[J]. J Mol Neurosci, 2013, 51(2): 352-363.
[32]
Vazana U, Veksler R, Pell GS, et al. Glutamate-mediated blood-brain barrier opening: implications for neuroprotection and drug delivery[J]. J Neurosci, 2016, 36(29): 7727-7739.
[33]
Lo AC, Chen AY, Hung VK, et al. Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet[J]. J Cereb Blood Flow Metab, 2005, 25(8): 998-1011.
[34]
Mäe MA, He L, Nordling S, et al. Single-cell analysis of blood-brain barrier response to pericyte loss[J]. Circ Res, 2021, 128(4): e46-e62.
[35]
Bhowmick S, D'Mello V, Caruso D, et al. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury[J]. Exp Neurol, 2019, 317: 260-270.
[36]
Sharp CD, Hines I, Houghton J, et al. Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor[J]. Am J Physiol Heart Circ Physiol, 2003, 285(6): H2592-2598.
[37]
Li M, Tian X, An R, et al. All-trans retinoic acid ameliorates the early experimental cerebral ischemia-reperfusion injury in rats by inhibiting the loss of the blood-brain barrier via the JNK/p38MAPK signaling pathway[J]. Neurochem Res, 2018, 43(6): 1283-1296.
[38]
Pulido RS, Munji RN, Chan TC, et al. Neuronal activity regulates blood-brain barrier efflux transport through endothelial circadian genes[J]. Neuron, 2020, 108(5): 937-952.e937.
[39]
Li Z, Xiao J, Xu X, et al. M-CSF, IL-6, and TGF-β promote generation of a new subset of tissue repair macrophage for traumatic brain injury recovery[J]. Sci Adv, 2021, 7(11): eabb6260.
[40]
Aertker BM, Kumar A, Prabhakara KS, et al. Pre-injury monocyte/macrophage depletion results in increased blood-brain barrier permeability after traumatic brain injury[J]. J Neurosci Res, 2019, 97(6): 698-707.
[41]
Reijerkerk A, Lakeman KA, Drexhage JA, et al. Brain endothelial barrier passage by monocytes is controlled by the endothelin system[J]. J Neurochem, 2012, 121(5): 730-737.
[42]
Lutton EM, Farney SK, Andrews AM, et al. Endothelial targeted strategies to combat oxidative stress: improving outcomes in traumatic brain injury[J]. Front Neurol, 2019, 10: 582.
[43]
Bhowmick S, Malat A, Caruso D, et al. Intercellular adhesion molecule-1-induced posttraumatic brain injury neuropathology in the prefrontal cortex and hippocampus leads to sensorimotor function deficits and psychological stress[J]. eNeuro, 2021, 8(4): ENEURO.0242-21.2021.
[44]
Huang B, Li X. The role of Mfsd2a in nervous system diseases[J]. Front Neurosci, 2021, 15: 730534.
[45]
Zhao C, Ma J, Wang Z, et al. Mfsd2a attenuates blood-brain barrier disruption after sub-arachnoid hemorrhage by inhibiting caveolae-mediated transcellular transport in rats[J]. Transl Stroke Res, 2020, 11(5): 1012-1027.
[46]
Simard JM, Kahle KT, Gerzanich V. Molecular mechanisms of microvascular failure in central nervous system injury--synergistic roles of NKCC1 and SUR1/TRPM4[J]. J Neurosurg, 2010, 113(3): 622-629.
[47]
Prakash R, Carmichael ST. Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury[J]. Curr Opin Neurol, 2015, 28(6): 556-564.
[48]
Shlosberg D, Benifla M, Kaufer D, et al. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury[J]. Nat Rev Neurol, 2010, 6(7): 393-403.
[1] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[2] 罗丽芳, 刘哲夫, 董兵, 刘晓玲, 丘雨旻, 周喆, 何江, 夏文豪. 达格列净改善高糖诱导的人脐静脉内皮细胞功能的机制研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 10-18.
[3] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[4] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[5] 潘立, 谢理政, 程宏伟, 茆翔. 创伤性颅脑损伤后垂体功能减退[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 308-312.
[6] 张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.
[7] 王景景, 符锋, 李建伟, 任党利, 陈翀, 刘慧, 孙洪涛, 涂悦. 针刺对中型创伤性颅脑损伤后BDNF/TrkB信号通路的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 199-205.
[8] 贾素英, 李倩, 郭姗姗. 创伤性颅脑损伤后血小板功能障碍的研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 180-185.
[9] 何佳伟, 张良, 杨骐, 王占祥. 创伤性颅脑损伤后进展性出血性损伤的诊疗现状[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 175-179.
[10] 王召, 田进杰, 郭朝, 王蕾, 严红燕, 冯素娟, 张毅. 血浆PGK1早期检测对创伤性颅脑损伤患者病情严重程度及预后的预测价值[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 154-159.
[11] 张永明. 颈段脊髓电刺激治疗颅脑损伤后慢性意识障碍的进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 129-134.
[12] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
[13] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[14] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[15] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
阅读次数
全文


摘要