切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (05) : 311 -314. doi: 10.3877/cma.j.issn.2095-9141.2022.05.011

综述

近红外光谱技术在创伤性颅脑损伤中的应用研究进展
卢维新1, 严贵忠2, 任海军2,()   
  1. 1. 730030 兰州,兰州大学第二医院体外循环科
    2. 730030 兰州,兰州大学第二医院神经外科
  • 收稿日期:2021-07-06 出版日期:2022-10-15
  • 通信作者: 任海军
  • 基金资助:
    兰州大学第二医院萃英科技创新计划项目(CY2019-BJ11)

Research progress on application of near-infrared spectroscopy in traumatic brain injury

Weixin Lu1, Guizhong Yan2, Haijun Ren2,()   

  1. 1. Department of Cardiopulmonary Bypass, The Second Hospital of Lanzhou University, Lanzhou 730030, China
    2. Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China
  • Received:2021-07-06 Published:2022-10-15
  • Corresponding author: Haijun Ren
引用本文:

卢维新, 严贵忠, 任海军. 近红外光谱技术在创伤性颅脑损伤中的应用研究进展[J/OL]. 中华神经创伤外科电子杂志, 2022, 08(05): 311-314.

Weixin Lu, Guizhong Yan, Haijun Ren. Research progress on application of near-infrared spectroscopy in traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(05): 311-314.

创伤性颅脑损伤(TBI)是全球年轻人发病和死亡的主要原因。脑近红外光谱技术(NIRS)作为一项无创的连续监测技术,在TBI领域中主要应用于无创、持续地监测脑组织氧合,但相关技术的可靠性仍然存在不确定性。本文通过回顾NIRS在TBI中应用的相关文献,探讨NIRS是否能够替代有创脑氧监测技术,以及在监测颅内血肿、轻度TBI及脑血管自动调节功能方面的研究进展。

Traumatic brain injury (TBI) is still the leading cause of mortality and morbidity in young adults worldwide. As a non-invasive continuous monitoring technology, brain near-infrared spectroscopy (NIRS) is mainly used in the field of TBI for non-invasive and continuous monitoring of brain tissue oxygenation, but the reliability of related technologies is still uncertain. This article reviews the relevant literature on the application of NIRS in TBI, and discusses whether NIRS can replace the invasive cerebral oxygen monitoring technology, as well as the research progress in monitoring intracranial hematoma, mild TBI and cerebral vascular autoregulation function.

[1]
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295.
[2]
Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: global burden of disease study[J]. Lancet, 1997, 349(9064): 1498-1504.
[3]
Stein SC, Georgoff P, Meghan S, et al. 150 years of treating severe traumatic brain injury: a systematic review of progress in mortality[J]. J Neurotrauma, 2010, 27(7): 1343-1353.
[4]
Kochanek PM, Berger RP, Fink EL, et al. The potential for bio-mediators and biomarkers in pediatric traumatic brain injury and neurocritical care[J]. Front Neurol, 2013, 4: 40.
[5]
Lazaridis C. Cerebral oxidative metabolism failure in traumatic brain injury: "brain shock" [J]. J Crit Care, 2017, 37: 230-233.
[6]
Griffiths H, Goyal MS, Pineda JA. Brain metabolism and severe pediatric traumatic brain injury[J]. Childs Nerv Syst, 2017, 33(10): 1719-1726.
[7]
Sinha S, Hudgins E, Schuster J, et al. Unraveling the complexities of invasive multimodality neuromonitoring[J]. Neurosurg Focus, 2017, 43(5): E4.
[8]
Dickens AM, Posti JP, Takala RSK, et al. Serum metabolites associated with computed tomography findings after traumatic brain injury[J]. J Neurotrauma, 2018, 35(22): 2673-2683.
[9]
Carpenter KL, Jalloh I, Gallagher CN, et al. (13)C-labelled microdialysis studies of cerebral metabolism in TBI patients[J]. Eur J Pharm Sci, 2014, 57(100): 87-97.
[10]
Jang KE, Tak S, Jung J, et al. Wavelet minimum description length detrending for near-infrared spectroscopy[J]. J Biomed Opt, 2009, 14(3): 034004.
[11]
Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science, 1977, 198(4323): 1264-1267.
[12]
Yu Y, Lu Y, Meng L, et al. Monitoring cerebral ischemia using cerebral oximetry: pros and cons[J]. J Biomed Res, 2016, 30(1): 1-4.
[13]
Yoshitani K, Kawaguchi M, Miura N, et al. Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements[J]. Anesthesiology, 2007, 106(3): 458-462.
[14]
Leal-Noval SR, Cayuela A, Arellano-Orden V, et al. Invasive and noninvasive assessment of cerebral oxygenation in patients with severe traumatic brain injury[J]. Intensive Care Med, 2010, 36(8): 1309-1317.
[15]
Davies DJ, Clancy M, Dehghani H, et al. Cerebral oxygenation in traumatic brain injury: can a non-invasive frequency domain near-infrared spectroscopy device detect changes in brain tissue oxygen tension as well as the established invasive monitor?[J]. J Neurotrauma, 2019, 36(7): 1175-1183.
[16]
Rosenthal G, Furmanov A, Itshayek E, et al. Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury[J]. J Neurosurg, 2014, 120(4): 901-907.
[17]
Stocchetti N, Barbagallo M, Gordon CR, et al. Arterio-jugular difference of oxygen and intracranial pressure in comatose, head injured patients. I. Technical aspects and complications[J]. Minerva Anestesiol, 1991, 57(6): 319-326.
[18]
van den Brink WA, van Santbrink H, Steyerberg EW, et al. Brain oxygen tension in severe head injury[J]. Neurosurgery, 2000, 46(4): 868-878.
[19]
Feldman Z, Robertson CS. Monitoring of cerebral hemodynamics with jugular bulb catheters[J]. Crit Care Clin, 1997, 13(1): 51-77.
[20]
Gopinath SP, Valadka AB, Uzura M, et al. Comparison of jugular venous oxygen saturation and brain tissue Po2 as monitors of cerebral ischemia after head injury[J]. Crit Care Med, 1999, 27(11): 2337-2345.
[21]
Longhi L, Pagan F, Valeriani V, et al. Monitoring brain tissue oxygen tension in brain-injured patients reveals hypoxic episodes in normal-appearing and in peri-focal tissue[J]. Intensive Care Med, 2007, 33(12): 2136-2142.
[22]
Vakhtin AA, Calhoun VD, Jung RE, et al. Changes in intrinsic functional brain networks following blast-induced mild traumatic brain injury[J]. Brain Inj, 2013, 27(11): 1304-1310.
[23]
Giza CC, Hovda DA. The new neurometabolic cascade of concussion[J]. Neurosurgery, 2014, 75 Suppl 4(4): S24-S33.
[24]
Jantzen KJ, Anderson B, Steinberg FL, et al. A prospective functional MR imaging study of mild traumatic brain injury in college football players[J]. AJNR Am J Neuroradiol, 2004, 25(5): 738-745.
[25]
Hofman PA, Stapert SZ, van Kroonenburgh MJ, et al. MR imaging, single-photon emission CT, and neurocognitive performance after mild traumatic brain injury[J]. AJNR Am J Neuroradiol, 2001, 22(3): 441-449.
[26]
Hoge CW, Auchterlonie JL, Milliken CS. Mental health problems, use of mental health services, and attrition from military service after returning from deployment to Iraq or afghanistan[J]. JAMA, 2006, 295(9): 1023-1032.
[27]
Lewine JD, Davis JT, Bigler ED, et al. Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI[J]. J Head Trauma Rehabil, 2007, 22(3): 141-155.
[28]
Chen JK, Johnston KM, Frey S, et al. Functional abnormalities in symptomatic concussed athletes: an fMRI study[J]. NeuroImage, 2004, 22(1): 68-82.
[29]
Davis GA, Iverson GL, Guskiewicz KM, et al. Contributions of neuroimaging, balance testing, electrophysiology and blood markers to the assessment of sport-related concussion[J]. Br J Sports Med, 2009, 43 Suppl 1: i36-i45.
[30]
McCrory P, Johnston K, Meeuwisse W, et al. Summary and agreement statement of the 2nd international conference on concussion in sport, Prague 2004[J]. Clin J Sport Med, 2005, 15(2): 48-55.
[31]
Vacchiano C, Silva S. Characterization of bilateral frontal lobe cerebral oxygen saturation in patients with mild traumatic brain injury[J]. Nurs Outlook, 2017, 65(5s): S36-S43.
[32]
Robertson CS, Zager EL, Narayan RK, et al. Clinical evaluation of a portable near-infrared device for detection of traumatic intracranial hematomas[J]. J Neurotrauma, 2010, 27(9): 1597-1604.
[33]
Xu L, Tao X, Liu W, et al. Portable near-infrared rapid detection of intracranial hemorrhage in Chinese population[J]. J Clin Neurosci, 2017, 40: 136-146.
[34]
Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study[J]. Anesth Analg, 2007, 104(1): 51-58.
[35]
Czosnyka M, Brady K, Reinhard M, et al. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links[J]. Neurocrit Care, 2009, 10(3): 373-386.
[36]
Bindra J, Pham P, Aneman A, et al. Non-invasive monitoring of dynamic cerebrovascular autoregulation using near infrared spectroscopy and the Finometer photoplethysmograph[J]. Neurocrit Care, 2016, 24(3): 442-447.
[37]
Highton D, Ghosh A, Tachtsidis I, et al. Monitoring cerebral autoregulation after brain injury: multimodal assessment of cerebral slow-wave oscillations using near-infrared spectroscopy[J]. Anesth Analg, 2015, 121(1): 198-205.
[38]
Diedler J, Zweifel C, Budohoski KP, et al. The limitations of near-infrared spectroscopy to assess cerebrovascular reactivity: the role of slow frequency oscillations[J]. Anesth Analg, 2011, 113(4): 849-857.
[39]
Dias C, Maia I, Cerejo A, et al. Pressures, flow, and brain oxygenation during plateau waves of intracranial pressure[J]. Neurocrit Care, 2014, 21(1): 124-132.
[40]
Llompart-Pou JA, Barea-Mendoza JA, Sanchez-Casado M, et al. Neuromonitoring in the severe traumatic brain injury. Spanish trauma ICU registry (RETRAUCI)[J]. Neurocirugia (Astur), 2020, 31(1): 1-6.
[41]
Miller S, Mitra K. NIRS-based cerebrovascular regulation assessment: exercise and cerebrovascular reactivity[J]. Neurophotonics, 2017, 4(4): 041503.
[42]
Zeiler FA, Donnelly J, Menon DK, et al. Continuous autoregulatory indices derived from multi-modal monitoring: each one is not like the other[J]. Neurotrauma, 2017, 34, 3070-3080.
[1] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[2] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[3] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[4] 鹿海龙, 朱玉辐, 贺雪凤, 蔡廷江, 王栋, 朱圣玲, 张恩刚, 王策. 创伤性颅脑损伤二次手术的危险因素分析及预警模型构建[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 97-101.
[5] 刘彪, 巍山, 关永胜. 基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 22-27.
[6] 唐春雨, 李倩, 郭姗姗, 叶奇, 张丹. 创伤性颅脑损伤神经生理学特征[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 367-371.
[7] 聂玉金, 曹培成. 创伤性颅脑损伤患者保守治疗发生脑积水的危险因素分析[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 355-359.
[8] 潘立, 谢理政, 程宏伟, 茆翔. 创伤性颅脑损伤后垂体功能减退[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(05): 308-312.
[9] 张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.
[10] 王景景, 符锋, 李建伟, 任党利, 陈翀, 刘慧, 孙洪涛, 涂悦. 针刺对中型创伤性颅脑损伤后BDNF/TrkB信号通路的影响[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(04): 199-205.
[11] 贾素英, 李倩, 郭姗姗. 创伤性颅脑损伤后血小板功能障碍的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(03): 180-185.
[12] 何佳伟, 张良, 杨骐, 王占祥. 创伤性颅脑损伤后进展性出血性损伤的诊疗现状[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(03): 175-179.
[13] 王召, 田进杰, 郭朝, 王蕾, 严红燕, 冯素娟, 张毅. 血浆PGK1早期检测对创伤性颅脑损伤患者病情严重程度及预后的预测价值[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(03): 154-159.
[14] 张永明. 颈段脊髓电刺激治疗颅脑损伤后慢性意识障碍的进展[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(03): 129-134.
[15] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?