[1] |
|
[2] |
|
[3] |
Wu M, Gu X, Ma Z. Mitochondrial quality control in cerebral ischemia-reperfusion injury[J]. Mol Neurobiol, 2021, 58(10): 5253-5271. DOI: 10.1007/s12035-021-02494-8.
|
[4] |
Kishida K, Iida T, Yamada T, et al. d-Allose is absorbed via sodium-dependent glucose cotransporter 1 (SGLT1) in the rat small intestine[J]. Metabol Open, 2021, 11: 100112. DOI: 10.1016/j.metop.2021.100112.
|
[5] |
Khajeh S, Ganjavi M, Panahi G, et al. D-allose: molecular pathways and therapeutic capacity in cancer[J]. Curr Mol Pharmacol, 2023, 16(8): 801-810. DOI: 10.2174/1874467216666221227105011.
|
[6] |
Sui L, Nomura R, Dong Y, et al. Cryoprotective effects of D-allose on mammalian cells[J]. Cryobiology, 2007, 55(2): 87-92. DOI: 10.1016/j.cryobiol.2007.05.003.
|
[7] |
Blanda V, Bracale UM, Di Taranto MD, et al. Galectin-3 in cardiovascular diseases[J]. Int J Mol Sci, 2020, 21(23): 9232. DOI: 10.3390/ijms21239232.
|
[8] |
Ekingen E, Yilmaz M, Yildiz M, et al. Utilization of glial fibrillary acidic protein and galectin-3 in the diagnosis of cerebral infarction patients with normal cranial tomography[J]. Niger J Clin Pract, 2017, 20(4): 433-437. DOI: 10.4103/1119-3077.187311.
|
[9] |
Jagodzinski A, Havulinna AS, Appelbaum S, et al. Predictive value of galectin-3 for incident cardiovascular disease and heart failure in the population-based FINRISK 1997 cohort[J]. Int J Cardiol, 2015, 192: 33-39. DOI: 10.1016/j.ijcard.2015.05.040.
|
[10] |
|
[11] |
Doverhag C, Hedtjärn M, Poirier F, et al. Galectin-3 contributes to neonatal hypoxic-ischemic brain injury[J]. Neurobiol Dis, 2010, 38(1): 36-46. DOI: 10.1016/j.nbd.2009.12.024.
|
[12] |
Cui Y, Zhang NN, Wang D, et al. Modified citrus pectin alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome activation via TLR4/NF-κB signaling pathway in microglia[J]. J Inflamm Res, 2022, 15: 3369-3385. DOI: 10.2147/jir.S366927.
|
[13] |
|
[14] |
Gao D, Kawai N, Tamiya T. The anti-inflammatory effects of D-allose contribute to attenuation of cerebral ischemia-reperfusion injury[J]. Med Hypotheses, 2011, 76(6): 911-913. DOI: 10.1016/j.mehy.2011.03.007.
|
[15] |
Gao D, Kawai N, Nakamura T, et al. Anti-inflammatory effect of D-allose in cerebral ischemia/reperfusion injury in rats[J]. Neurol Med Chir (Tokyo), 2013, 53(6): 365-374. DOI: 10.2176/nmc.53.365.
|
[16] |
Huang T, Gao D, Hei Y, et al. D-allose protects the blood brain barrier through PPARγ-mediated anti-inflammatory pathway in the mice model of ischemia reperfusion injury[J]. Brain Res, 2016, 1642: 478-486. DOI: 10.1016/j.brainres.2016.04.038.
|
[17] |
Zhang M, Fu YH, Luo YW, et al. d-allose protects brain microvascular endothelial cells from hypoxic/reoxygenated injury by inhibiting endoplasmic reticulum stress[J]. Neurosci Lett, 2023, 793: 137000. DOI: 10.1016/j.neulet.2022.137000.
|
[18] |
Zhang L, Huang Y, Lou H, et al. LGALS3BP/Gal-3 promotes osteogenic differentiation of human periodontal ligament stem cells[J]. Arch Oral Biol, 2021, 128: 105149. DOI: 10.1016/j.archoralbio.2021.105149.
|
[19] |
He XW, Li WL, Li C, et al. Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic stroke[J]. Sci Rep, 2017, 7: 40994. DOI: 10.1038/srep40994.
|
[20] |
Cibor D, Szczeklik K, Brzozowski B, et al. Serum galectin 3, galectin 9 and galectin 3-binding proteins in patients with active and inactive inflammatory bowel disease[J]. J Physiol Pharmacol, 2019, 70(1). DOI: 10.26402/jpp.2019.1.06.
|
[21] |
Harazono Y, Nakajima K, Raz A. Why anti-Bcl-2 clinical trials fail: a solution[J]. Cancer Metastasis Rev, 2014, 33(1): 285-294. DOI: 10.1007/s10555-013-9450-8.
|
[22] |
Hirani N, Mackinnon AC, Nicol L, et al. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis[J]. Eur Respir J, 2021, 57(5): 2002559. DOI: 10.1183/13993003.02559-2020.
|
[23] |
Li H, Xiao L, He H, et al. Quercetin Attenuates Atherosclerotic Inflammation by Inhibiting Galectin-3-NLRP3 Signaling Pathway[J]. Mol Nutr Food Res, 2021, 65(15): e2000746. DOI: 10.1002/mnfr.202000746.
|