切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2023, Vol. 09 ›› Issue (03) : 135 -141. doi: 10.3877/cma.j.issn.2095-9141.2023.03.002

基础研究

D-阿洛糖对OGD/R诱导的HT22细胞损伤及Gal-3表达的影响
张敏, 费晓炜, 罗耀文, 付奕豪, 张磊, 高大宽()   
  1. 710032 西安,空军军医大学第一附属医院神经外科
  • 收稿日期:2023-02-17 出版日期:2023-06-15
  • 通信作者: 高大宽

Effects of D-allose on OGD/R-induced HT22 cell damage and Gal-3 expression

Min Zhang, Xiaowei Fei, Yaowen Luo, Yihao Fu, Lei Zhang, Dakuan Gao()   

  1. Department of Neurosurgery, The First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
  • Received:2023-02-17 Published:2023-06-15
  • Corresponding author: Dakuan Gao
  • Supported by:
    National Natural Science Foundation of China(81971227)
引用本文:

张敏, 费晓炜, 罗耀文, 付奕豪, 张磊, 高大宽. D-阿洛糖对OGD/R诱导的HT22细胞损伤及Gal-3表达的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 135-141.

Min Zhang, Xiaowei Fei, Yaowen Luo, Yihao Fu, Lei Zhang, Dakuan Gao. Effects of D-allose on OGD/R-induced HT22 cell damage and Gal-3 expression[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(03): 135-141.

目的

探讨D-阿洛糖处理对氧糖剥夺再灌注(OGD/R)诱导的HT22细胞损伤及半乳糖凝集素-3(Gal-3)表达的影响。

方法

正常培养的HT22细胞,传代贴壁后,随机分为对照组、OGD/R组、D-阿洛糖组与抑制剂组。构建OGD/R模型,设立OGD/R组。D-阿洛糖组:构建OGD/R模型,复氧复糖时于培养基中加入10 mmol/L D-阿洛糖,持续到复氧复糖结束。抑制剂组:构建OGD/R模型,复氧复糖时于培养基中同时加入D-阿洛糖和TD139,持续到复氧复糖结束。采用CCK8法检测细胞存活率;Western blot检测Gal-3以及凋亡相关蛋白Bax、Bcl-2、Caspase-3、Cleaved caspase-3的表达;采用流式细胞术检测细胞凋亡。

结果

与OGD/R组相比,D-阿洛糖组细胞存活率显著升高,细胞凋亡率显著降低,Bax、Cleaved caspase-3、Gal-3、LGALS3BP蛋白表达量显著降低,Bcl-2蛋白表达量显著升高,差异均有统计学意义(P<0.05);而Caspase-3蛋白表达量比较差异无统计学意义(P>0.05)。与D-阿洛糖组相比,抑制剂组的Bcl-2/Bax表达显著增加,Cleaved caspase-3蛋白表达量显著减少,差异均有统计学意义(P<0.05);Caspase-3蛋白表达量比较差异无统计学意义(P>0.05)。

结论

D-阿洛糖处理对OGD/R诱导的HT22细胞损伤有保护作用以及D-阿洛糖可能通过抑制Gal-3发挥保护作用。

Objective

To investigate the effects of D-allose treatment on oxygen glucose deprivation/reperfusion (OGD/R) induced HT22 cell damage and galactin-3 (Gal-3) expression.

Methods

HT22 cells in normal culture were randomly divided into control group, OGD/R group, D-allose group and inhibitor group after passage and adhesion. OGD/R model was constructed and set it as the OGD/R group. D-allose group: OGD/R model was constructed, 10 mmol/L D-allose was added into the medium during the reoxygenation and reglucose and continued until the end of the reoxygenation and reglucose. Inhibitor group: OGD/R model was constructed, and D-allose and TD139 were added to the culture medium at the same time during reoxygenation and disaccharide, which lasted until the end of reoxygenation and disaccharide. CCK8 assay was used to detect cell survival rate. The expression of Gal-3 and apoptosis-related proteins Bax, Bcl-2, Caspase-3, Cleaved caspase-3 were detected by Western blot. Apoptosis was detected by flow cytometry.

Results

Compared with OGD/R group, the survival rate of cells in D-allose group was significantly increased, the apoptosis rate was significantly decreased, the protein expression levels of Bax, Cleaved caspase-3, Gal-3 and LGALS3BP were significantly decreased, and the expression level of Bcl-2 protein was significantly increased, with statistical significance (P<0.05); but there was no significant difference in Caspase-3 protein expression (P>0.05). Compared with the D-allose group, the expression of Bcl-2/Bax in inhibitor group was significantly increased, Cleaved caspase-3 protein expression was significantly decreased, with statistical significance (P<0.05); there was no significant difference in Caspase-3 protein expression (P>0.05).

Conclusion

D-allose treatment has a protective effect on OGD/R-induced HT22 cell damage, and D-allose may play a protective role by inhibiting Gal-3.

图1 OGD/R的处理时间对HT22细胞存活率的影响(n=6)与对照组比较,aP<0.05;OGD/R:氧糖剥夺再灌注
Fig.1 Effects of OGD/R processing time on the survival rate of HT22 cells (n=6)
图2 OGD/R的处理时间对HT22细胞中Gal-3蛋白表达的影响(n=3)A:Gal-3和β-actin蛋白表达量;B:Gal-3和β-actin相对表达水平;与对照组比较,aP<0.05;OGD/R:氧糖剥夺再灌注;Gal-3:半乳糖凝集素-3
Fig.2 Effects of OGD/R processing time on Gal-3 protein expression in HT22 cells (n=3)
图3 不同浓度的D-阿洛糖对OGD/R后细胞存活率的影响(n=6)与对照组相比,aP<0.05;与OGD/R组相比,bP<0.05;OGD/R:氧糖剥夺再灌注
Fig.3 Effect of different concentrations of D-allose on cell survival after OGD/R (n=6)
图4 D-阿洛糖对OGD/R后细胞凋亡的影响(n=3)A:各组流式检测细胞凋亡象限图(四个象限的意义:B1:坏死细胞;B2:晚期凋亡细胞;B3:未发生凋亡的细胞;B4:早期凋亡细胞);B:流式检测细胞凋亡统计图;与对照组比较,aP<0.05;与OGD/R组比较,bP<0.05;OGD/R:氧糖剥夺再灌注
Fig.4 Effect of D-allose on apoptosis after OGD/R (n=3)
图5 D-阿洛糖对OGD/R后细胞凋亡相关蛋白表达的影响(n=3)A:Bax、Caspase-3、Cleaved caspase-3和β-actin蛋白表达量;B:Bax和β-actin相对表达水平;C:Caspase-3和β-actin相对表达水平;D:Cleaved caspase-3和β-actin相对表达水平;与对照组比较,aP<0.05;与OGD/R组比较,bP<0.05;OGD/R:氧糖剥夺再灌注
Fig.5 Effect of D-allose on apoptosis-related protein expression after OGD/R (n=3)
图6 D-阿洛糖对OGD/R后Gal-3及下游蛋白表达的影响(n=3)A:Gal-3、LGALS3BP、Bcl-2和β-actin蛋白表达量;B:Gal-3和β-actin相对表达水平;C:LGALS3BP和β-actin相对表达水平;D:Bcl-2和β-actin相对表达水平;与对照组比较,aP<0.05;与OGD/R组比较,bP<0.05;OGD/R:氧糖剥夺再灌注;Gal-3:半乳糖凝集素-3
Fig.6 Effect of D-allose on expression of Gal-3 and downstream protein after OGD/R (n=3)
图7 TD139对OGD/R后细胞凋亡相关蛋白表达的影响(n=3)A:Bax、Bcl-2、Caspase-3、Cleaved caspase-3和β-actin蛋白表达量;B:Bcl-2和β-actin相对表达水平/Bax和β-actin相对表达水平;C:Caspase-3和β-actin相对表达水平;D:Cleaved caspase-3和β-actin相对表达水平;与对照组比较,aP<0.05;与OGD/R组比较,bP<0.05;与D-阿洛糖组比较,cP<0.05;OGD/R:氧糖剥夺再灌注
Fig.7 Effect of TD139 on apoptosis-related protein expression after OGD/R (n=3)
[1]
周良辅.砥砺前行——试论我国脑卒中的防治[J].中华脑科疾病与康复杂志(电子版), 2021, 11: 1-3. DOI: 10.3877/cma.j.issn.2095-123X.2021.01.001.
[2]
王亚楠,吴思缈,刘鸣.中国脑卒中15年变化趋势和特点[J].华西医学, 2021, 36(6): 803-807. DOI: 10.7507/1002-0179.202105046.
[3]
Wu M, Gu X, Ma Z. Mitochondrial quality control in cerebral ischemia-reperfusion injury[J]. Mol Neurobiol, 2021, 58(10): 5253-5271. DOI: 10.1007/s12035-021-02494-8.
[4]
Kishida K, Iida T, Yamada T, et al. d-Allose is absorbed via sodium-dependent glucose cotransporter 1 (SGLT1) in the rat small intestine[J]. Metabol Open, 2021, 11: 100112. DOI: 10.1016/j.metop.2021.100112.
[5]
Khajeh S, Ganjavi M, Panahi G, et al. D-allose: molecular pathways and therapeutic capacity in cancer[J]. Curr Mol Pharmacol, 2023, 16(8): 801-810. DOI: 10.2174/1874467216666221227105011.
[6]
Sui L, Nomura R, Dong Y, et al. Cryoprotective effects of D-allose on mammalian cells[J]. Cryobiology, 2007, 55(2): 87-92. DOI: 10.1016/j.cryobiol.2007.05.003.
[7]
Blanda V, Bracale UM, Di Taranto MD, et al. Galectin-3 in cardiovascular diseases[J]. Int J Mol Sci, 2020, 21(23): 9232. DOI: 10.3390/ijms21239232.
[8]
Ekingen E, Yilmaz M, Yildiz M, et al. Utilization of glial fibrillary acidic protein and galectin-3 in the diagnosis of cerebral infarction patients with normal cranial tomography[J]. Niger J Clin Pract, 2017, 20(4): 433-437. DOI: 10.4103/1119-3077.187311.
[9]
Jagodzinski A, Havulinna AS, Appelbaum S, et al. Predictive value of galectin-3 for incident cardiovascular disease and heart failure in the population-based FINRISK 1997 cohort[J]. Int J Cardiol, 2015, 192: 33-39. DOI: 10.1016/j.ijcard.2015.05.040.
[10]
张永康,韩燕.半乳糖凝集素-3与脑卒中:从病理生理学到临床的研究进展[J].安徽医药, 2022, 26(3): 434-438. DOI: 10.3969/j.issn.1009-6469.2022.03.003.
[11]
Doverhag C, Hedtjärn M, Poirier F, et al. Galectin-3 contributes to neonatal hypoxic-ischemic brain injury[J]. Neurobiol Dis, 2010, 38(1): 36-46. DOI: 10.1016/j.nbd.2009.12.024.
[12]
Cui Y, Zhang NN, Wang D, et al. Modified citrus pectin alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome activation via TLR4/NF-κB signaling pathway in microglia[J]. J Inflamm Res, 2022, 15: 3369-3385. DOI: 10.2147/jir.S366927.
[13]
马甜甜.半乳糖凝集素-3对脑卒中后认知功能障碍的预测作用研究进展[J].现代医药卫生, 2022, 38(23): 4075-4078. DOI: 10.3969/j.issn.1009-5519.2022.23.025.
[14]
Gao D, Kawai N, Tamiya T. The anti-inflammatory effects of D-allose contribute to attenuation of cerebral ischemia-reperfusion injury[J]. Med Hypotheses, 2011, 76(6): 911-913. DOI: 10.1016/j.mehy.2011.03.007.
[15]
Gao D, Kawai N, Nakamura T, et al. Anti-inflammatory effect of D-allose in cerebral ischemia/reperfusion injury in rats[J]. Neurol Med Chir (Tokyo), 2013, 53(6): 365-374. DOI: 10.2176/nmc.53.365.
[16]
Huang T, Gao D, Hei Y, et al. D-allose protects the blood brain barrier through PPARγ-mediated anti-inflammatory pathway in the mice model of ischemia reperfusion injury[J]. Brain Res, 2016, 1642: 478-486. DOI: 10.1016/j.brainres.2016.04.038.
[17]
Zhang M, Fu YH, Luo YW, et al. d-allose protects brain microvascular endothelial cells from hypoxic/reoxygenated injury by inhibiting endoplasmic reticulum stress[J]. Neurosci Lett, 2023, 793: 137000. DOI: 10.1016/j.neulet.2022.137000.
[18]
Zhang L, Huang Y, Lou H, et al. LGALS3BP/Gal-3 promotes osteogenic differentiation of human periodontal ligament stem cells[J]. Arch Oral Biol, 2021, 128: 105149. DOI: 10.1016/j.archoralbio.2021.105149.
[19]
He XW, Li WL, Li C, et al. Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic stroke[J]. Sci Rep, 2017, 7: 40994. DOI: 10.1038/srep40994.
[20]
Cibor D, Szczeklik K, Brzozowski B, et al. Serum galectin 3, galectin 9 and galectin 3-binding proteins in patients with active and inactive inflammatory bowel disease[J]. J Physiol Pharmacol, 2019, 70(1). DOI: 10.26402/jpp.2019.1.06.
[21]
Harazono Y, Nakajima K, Raz A. Why anti-Bcl-2 clinical trials fail: a solution[J]. Cancer Metastasis Rev, 2014, 33(1): 285-294. DOI: 10.1007/s10555-013-9450-8.
[22]
Hirani N, Mackinnon AC, Nicol L, et al. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis[J]. Eur Respir J, 2021, 57(5): 2002559. DOI: 10.1183/13993003.02559-2020.
[23]
Li H, Xiao L, He H, et al. Quercetin Attenuates Atherosclerotic Inflammation by Inhibiting Galectin-3-NLRP3 Signaling Pathway[J]. Mol Nutr Food Res, 2021, 65(15): e2000746. DOI: 10.1002/mnfr.202000746.
[1] 职瑾, 段斌, 吴松笛, 王清. 生长分化因子11对甲醛诱导的海马神经细胞凋亡的影响[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(05): 265-270.
[2] 李雨竹, 滕兰波, 刘书馨. 半乳糖凝集素-3与肾脏疾病的关系[J]. 中华肾病研究电子杂志, 2019, 08(02): 91-93.
[3] 陈强, 左丙杰, 刘岩, 苏雷, 孙国华. Galectin-3蛋白在人膀胱移行细胞癌诊断中的应用价值[J]. 中华诊断学电子杂志, 2020, 08(02): 117-120.
[4] 吴桂颖, 胡立群, 李红旗. 血清生长分化因子-15、可溶性人基质裂解素2、半乳糖凝集素-3检测在老年心力衰竭严重程度和预后评估中的应用[J]. 中华老年病研究电子杂志, 2020, 07(02): 12-16.
阅读次数
全文


摘要