切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2023, Vol. 09 ›› Issue (03) : 175 -179. doi: 10.3877/cma.j.issn.2095-9141.2023.03.009

综述

创伤性颅脑损伤后进展性出血性损伤的诊疗现状
何佳伟, 张良, 杨骐, 王占祥()   
  1. 361102 厦门,厦门大学附属第一医院神经外科
    471003 洛阳,河南科技大学第一附属医院急诊科
  • 收稿日期:2022-07-09 出版日期:2023-06-15
  • 通信作者: 王占祥

Current status of diagnosis and treatment of progressive hemorrhagic injury after traumatic brain injury

Jiawei He, Liang Zhang, Qi Yang, Zhanxiang Wang()   

  1. Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, Xiamen 361102, China
    Department of Emergency, the First Affiliated Hospital of He'nan University of Science and Technology, Luoyang 471003, China
  • Received:2022-07-09 Published:2023-06-15
  • Corresponding author: Zhanxiang Wang
  • Supported by:
    National Natural Science Foundation of China(82072777); Key Medical and Health Projects in Xiamen(3502Z20209005)
引用本文:

何佳伟, 张良, 杨骐, 王占祥. 创伤性颅脑损伤后进展性出血性损伤的诊疗现状[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 175-179.

Jiawei He, Liang Zhang, Qi Yang, Zhanxiang Wang. Current status of diagnosis and treatment of progressive hemorrhagic injury after traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(03): 175-179.

创伤性颅脑损伤(TBI)的发病率和死亡率较高,术后易出现各种并发症,导致患者预后不良。进展性出血性损伤(PHI)是TBI后最严重的并发症之一,会显著增加患者死亡率。目前关于PHI的定义、发生机制、相关标志物尚不统一,本文主要结合相关文献综述目前关于TBI后PHI相关的研究进展,以期为临床工作提供一定的参考。

Traumatic brain injury (TBI) has a high morbidity and mortality, which is prone to various complications, leading to a poor prognosis of patients. Progressive hemorrhagic injury (PHI) is one of the most serious complications after TBI, and can significantly increase patient mortality. At present, the definition, occurrence mechanism and related markers of PHI are not unified. This paper mainly reviews the current research progress of PHI after TBI combined with relevant literature, in order to provide some reference for clinical work.

[1]
Jochems D, van Wessem KJP, Houwert RM, et al. Outcome in patients with isolated moderate to severe traumatic brain injury[J]. Crit Care Res Pract, 2018, 2018: 3769418. DOI: 10.1155/2018/3769418.
[2]
Alali AS, Burton K, Fowler RA, et al. Economic evaluations in the diagnosis and management of traumatic brain injury: a systematic review and analysis of quality[J]. Value Health, 2015, 18(5): 721-734. DOI: 10.1016/j.jval.2015.04.012.
[3]
Taylor CA, Bell JM, Breiding MJ, et al. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - united states, 2007 and 2013[J]. MMWR Surveill Summ, 2017, 66(9): 1-16. DOI: 10.15585/mmwr.ss6609a1.
[4]
Folkerson LE, Sloan D, Cotton BA, et al. Predicting progressive hemorrhagic injury from isolated traumatic brain injury and coagulation[J]. Surgery, 2015, 158(3): 655-661. DOI: 10.1016/j.surg.2015.02.029.
[5]
Cepeda S, Gómez PA, Castaño-Leon AM, et al. Traumatic intracerebral hemorrhage: risk factors associated with progression[J]. J Neurotrauma, 2015, 32(16): 1246-1253. DOI: 10.1089/neu.2014.3808.
[6]
Oertel M, Kelly DF, McArthur D, et al. Progressive hemorrhage after head trauma: predictors and consequences of the evolving injury[J]. J Neurosurg, 2002, 96(1): 109-116. DOI: 10.3171/jns.2002.96.1.0109.
[7]
Stein SC, Young GS, Talucci RC, et al. Delayed brain injury after head trauma: significance of coagulopathy[J]. Neurosurgery, 1992, 30(2): 160-165. DOI: 10.1227/00006123-199202000-00002.
[8]
White CL, Griffith S, Caron JL. Early progression of traumatic cerebral contusions: characterization and risk factors[J]. J Trauma, 2009, 67(3): 508-514; discussion 514-515. DOI: 10.1097/TA.0b013e3181b2519f.
[9]
Webb AJ, Brown CS, Naylor RM, et al. Thromboelastography is a marker for clinically significant progressive hemorrhagic injury in severe traumatic brain injury[J]. Neurocrit Care, 2021, 35(3): 738-746. DOI: 10.1007/s12028-021-01217-0.
[10]
Vedantam A, Yamal JM, Rubin ML, et al. Progressive hemorrhagic injury after severe traumatic brain injury: effect of hemoglobin transfusion thresholds[J]. J Neurosurg, 2016, 125(5): 1229-1234. DOI: 10.3171/2015.11.JNS151515.
[11]
Yuan Q, Sun YR, Wu X, et al. Coagulopathy in traumatic brain injury and its correlation with progressive hemorrhagic injury: a systematic review and meta-analysis[J]. J Neurotrauma, 2016, 33(14): 1279-1291. DOI: 10.1089/neu.2015.4205.
[12]
van Gent JAN, van Essen TA, Bos MHA, et al. Coagulopathy after hemorrhagic traumatic brain injury, an observational study of the incidence and prognosis[J]. Acta Neurochir (Wien), 2020, 162(2): 329-336. DOI: 10.1007/s00701-019-04111-z.
[13]
Tian Y, Salsbery B, Wang M, et al. Brain-derived microparticles induce systemic coagulation in a murine model of traumatic brain injury[J]. Blood, 2015, 125(13): 2151-2159. DOI: 10.1182/blood-2014-09-598805.
[14]
Liu J, Tian HL. Relationship between trauma-induced coagulopathy and progressive hemorrhagic injury in patients with traumatic brain injury[J]. Chin J Traumatol, 2016, 19(3): 172-175. DOI: 10.1016/j.cjtee.2016.01.011.
[15]
Díaz-Romero R, Avendaño P, Coloma G. Life-threatening paradoxical brain herniation rapidly reversed by emergency cranioplasty repair: a case report[J]. Acta Neurochir (Wien), 2015, 157(11): 2031-2032. DOI: 10.1007/s00701-015-2569-3.
[16]
Wan X, Fan T, Wang S, et al. Progressive hemorrhagic injury in patients with traumatic intracerebral hemorrhage: characteristics, risk factors and impact on management[J]. Acta Neurochir (Wien), 2017, 159(2): 227-235. DOI: 10.1007/s00701-016-3043-6.
[17]
Carnevale JA, Segar DJ, Powers AY, et al. Blossoming contusions: identifying factors contributing to the expansion of traumatic intracerebral hemorrhage[J]. J Neurosurg, 2018, 129(5): 1305-1316. DOI: 10.3171/2017.7.JNS17988.
[18]
Rehman L, Afzal A, Aziz HF, et al. Radiological parameters to predict hemorrhagic progression of traumatic contusional brain injury[J]. J Neurosci Rural Pract, 2019, 10(2): 212-217. DOI: 10.4103/jnrp.jnrp_335_18.
[19]
Allison RZ, Nakagawa K, Hayashi M, et al. Derivation of a predictive score for hemorrhagic progression of cerebral contusions in moderate and severe traumatic brain injury[J]. Neurocrit Care, 2017, 26(1): 80-86. DOI: 10.1007/s12028-016-0303-5.
[20]
Di G, Liu H, Jiang X, et al. Clinical predictors of progressive hemorrhagic injury in children with mild traumatic brain injury[J]. Front Neurol, 2017, 8: 560. DOI: 10.3389/fneur.2017.00560.
[21]
Kim WH, Lim DJ, Kim SH, et al. Is routine repeated head CT necessary for all pediatric traumatic brain injury?[J]. J Korean Neurosurg Soc, 2015, 58(2): 125-130. DOI: 10.3340/jkns.2015.58.2.125.
[22]
Picetti E, Rossi S, Abu-Zidan FM, et al. WSES consensus conference guidelines: monitoring and management of severe adult traumatic brain injury patients with polytrauma in the first 24 hours[J]. World J Emerg Surg, 2019, 14: 53. DOI: 10.1186/s13017-019-0270-1.
[23]
Martin G, Shah D, Elson N, et al. Relationship of coagulopathy and platelet dysfunction to transfusion needs after traumatic brain injury[J]. Neurocrit Care, 2018, 28(3): 330-337. DOI: 10.1007/s12028-017-0485-5.
[24]
Gratz J, Güting H, Thorn S, et al. Protocolised thromboelastometric-guided haemostatic management in patients with traumatic brain injury: a pilot study[J]. Anaesthesia, 2019, 74(7): 883-890. DOI: 10.1111/anae.14670.
[25]
Zhang J, He M, Song Y, et al. Prognostic role of D-dimer level upon admission in patients with traumatic brain injury[J]. Medicine (Baltimore), 2018, 97(31): e11774. DOI: 10.1097/MD.0000000000011774.
[26]
Zhao H, Cai X, Liu N, et al. Thromboelastography as a tool for monitoring blood coagulation dysfunction after adequate fluid resuscitation can predict poor outcomes in patients with septic shock[J]. J Chin Med Assoc, 2020, 83(7): 674-677. DOI: 10.1097/JCMA.0000000000000345.
[27]
Peng Q, Zhao J, Wang P, et al. Expressions of plasma cystatin C, D-dimer and hypersensitive C-reactive protein in patients with intracranial progressive hemorrhagic injury after craniocerebral injury, and their clinical significance[J]. Arq Neuropsiquiatr, 2019, 77(6): 381-386. DOI: 10.1590/0004-282X20190057.
[28]
Fujiwara G, Okada Y, Sakakibara T, et al. The association between D-dimer levels and long-term neurological outcomes of patients with traumatic brain injury: an analysis of a nationwide observational neurotrauma database in Japan[J]. Neurocrit Care, 2022, 36(2): 483-491. DOI: 10.1007/s12028-021-01329-7.
[29]
Karsy M, Kim R, Azab M, et al. Higher admission D-dimer values are associated with an increased risk of nonroutine discharge in neurosurgery patients[J]. Cureus, 2020, 12(7): e9425. DOI: 10.7759/cureus.9425.
[30]
Sheng J, Chen W, Zhuang D, et al. A clinical predictive nomogram for traumatic brain parenchyma hematoma progression[J]. Neurol Ther, 2022, 11(1): 185-203. DOI: 10.1007/s40120-021-00306-8.
[31]
Xu DX, Du WT, Li X, et al. D-dimer/fibrinogen ratio for the prediction of progressive hemorrhagic injury after traumatic brain injury[J]. Clin Chim Acta, 2020, 507: 143-148. DOI: 10.1016/j.cca.2020.04.022.
[32]
Joseph B, Aziz H, Zangbar B, et al. Acquired coagulopathy of traumatic brain injury defined by routine laboratory tests: which laboratory values matter?[J]. J Trauma Acute Care Surg, 2014, 76(1): 121-125. DOI: 10.1097/TA.0b013e3182a9cc95.
[33]
Jha RM, Zusman BE, Puccio AM, et al. Genetic variants associated with intraparenchymal hemorrhage progression after traumatic brain injury[J]. JAMA Netw Open, 2021, 4(7): e2116839. DOI: 10.1001/jamanetworkopen.2021.16839.
[34]
Esnault P, Mathais Q, D'Aranda E, et al. Ability of fibrin monomers to predict progressive hemorrhagic injury in patients with severe traumatic brain injury[J]. Neurocrit Care, 2020, 33(1): 182-195. DOI: 10.1007/s12028-019-00882-6.
[35]
Tréguier Y, Bull-Maurer A, Roingeard P. Apolipoprotein E, a crucial cellular protein in the lifecycle of hepatitis viruses[J]. Int J Mol Sci, 2022, 23(7): 3676. DOI: 10.3390/ijms23073676.
[36]
Hellstrøm T, Andelic N, Holthe Ø, et al. APOE-ε4 is associated with reduced verbal memory performance and higher emotional, cognitive, and everyday executive function symptoms two months after mild traumatic brain injury[J]. Front Neurol, 2022, 13: 735206. DOI: 10.3389/fneur.2022.735206.
[37]
Yousefvand S, Hadjzadeh MA, Keshavarzi Z, et al. Effects of prolactin on movement disorders and APOE, GFAP, and PRL receptor gene expression following intracerebral hemorrhage in rats[J]. Iran J Basic Med Sci, 2021, 24(12): 1709-1716. DOI: 10.22038/IJBMS.2021.58176.12927.
[38]
Wan X, Gan C, You C, et al. Association of APOE ε4 with progressive hemorrhagic injury in patients with traumatic intracerebral hemorrhage[J]. J Neurosurg, 2019, Online ahead of print.
[39]
Tzioras M, Davies C, Newman A, et al. Invited Review: APOE at the interface of inflammation, neurodegeneration and pathological protein spread in Alzheimer's disease[J]. Neuropathol Appl Neurobiol, 2019, 45(4): 327-346. DOI: 10.1111/nan.12529.
[40]
Stanczykiewicz B, Gburek J, Rutkowska M, et al. Ovocystatin induced changes in expression of Alzheimer's disease relevant proteins in APP/PS1 transgenic mice[J]. J Clin Med, 2022, 11(9): 2372. DOI: 10.3390/jcm11092372.
[41]
Huang HZ, Qiu M, Lin JZ, et al. Potential effect of tropical fruits Phyllanthus emblica L. for the prevention and management of type 2 diabetic complications: a systematic review of recent advances[J]. Eur J Nutr, 2021, 60(7): 3525-3542. DOI: 10.1007/s00394-020-02471-2.
[42]
Karri J, Cardenas JC, Matijevic N, et al. Early fibrinolysis associated with hemorrhagic progression following traumatic brain injury[J]. Shock, 2017, 48(6): 644-650. DOI: 10.1097/SHK.0000000000000912.
[43]
Allard CB, Scarpelini S, Rhind SG, et al. Abnormal coagulation tests are associated with progression of traumatic intracranial hemorrhage[J]. J Trauma, 2009, 67(5): 959-967. DOI: 10.1097/TA.0b013e3181ad5d37.
[44]
Wu X, Du Z, Yu J, et al. Activity of factor VII in patients with isolated blunt traumatic brain injury: association with coagulopathy and progressive hemorrhagic injury[J]. J Trauma Acute Care Surg, 2014, 76(1): 114-120. DOI: 10.1097/TA.0b013e3182a8fe48.
[45]
Chen T, Chen S, Wu Y, et al. A predictive model for postoperative progressive haemorrhagic injury in traumatic brain injuries[J]. BMC Neurol, 2022, 22(1): 16. DOI: 10.1186/s12883-021-02541-w.
[46]
Thurman DJ. The epidemiology of traumatic brain injury in children and youths: a review of research since 1990[J]. J Child Neurol, 2016, 31(1): 20-27. DOI: 10.1177/0883073814544363.
[47]
Hu GW, Lang HL, Guo H, et al. A risk score based on admission characteristics to predict progressive hemorrhagic injury from traumatic brain injury in children[J]. Eur J Pediatr, 2017, 176(6): 689-696. DOI: 10.1007/s00431-017-2897-9.
[48]
Yamashita Y, Uozumi R, Hamatani Y, et al. Current status and outcomes of direct oral anticoagulant use in real-world atrial fibrillation patients-Fushimi AF Registry[J]. Circ J, 2017, 81(9): 1278-1285. DOI: 10.1253/circj.CJ-16-1337.
[49]
Koyama H, Yagi K, Hara K, et al. Combination therapy using prothrombin complex concentrate and vitamin K in anticoagulated patients with traumatic intracranial hemorrhage prevents progressive hemorrhagic injury: a historically controlled study[J]. Neurol Med Chir (Tokyo), 2021, 61(1): 47-54. DOI: 10.2176/nmc.oa.2020-0252.
[50]
Steiner T, Poli S, Griebe M, et al. Fresh frozen plasma versus prothrombin complex concentrate in patients with intracranial haemorrhage related to vitamin K antagonists (INCH): a randomised trial[J]. Lancet Neurol, 2016, 15(6): 566-573. DOI: 10.1016/S1474-4422(16)00110-1.
[51]
Jehan F, Aziz H, OʼKeeffe T, et al. The role of four-factor prothrombin complex concentrate in coagulopathy of trauma: a propensity matched analysis[J]. J Trauma Acute Care Surg, 2018, 85(1): 18-24. DOI: 10.1097/TA.0000000000001938.
[52]
Munlemvo DM, Tobias JD, Chenault KM, et al. Prothrombin complex concentrates to treat coagulation disturbances: an overview with a focus on use in infants and children[J]. Cardiol Res, 2022, 13(1): 18-26. DOI: 10.14740/cr1342.
[53]
Zeeshan M, Hamidi M, Kulvatunyou N, et al. 3-factor versus 4-factor PCC in coagulopathy of trauma: four is better than three[J]. Shock, 2019, 52(1): 23-28. DOI: 10.1097/SHK.0000000000001240.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[3] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[4] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[5] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[6] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[7] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[8] 杨雪, 张伟, 尚培中, 宋创业, 尚丹丹, 张蔚. 胆囊十二指肠瘘结石经瘘口排出后自愈一例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 707-708.
[9] 姜明, 罗锐, 龙成超. 闭孔疝的诊断与治疗:10年73例患者诊疗经验总结[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 706-710.
[10] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[11] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[12] 孙欣欣, 刘军, 陈超伍, 孙超. 超声内镜引导细针穿刺抽吸术在胰腺占位性病变中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 418-421.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要