切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2023, Vol. 09 ›› Issue (03) : 175 -179. doi: 10.3877/cma.j.issn.2095-9141.2023.03.009

综述

创伤性颅脑损伤后进展性出血性损伤的诊疗现状
何佳伟, 张良, 杨骐, 王占祥()   
  1. 361102 厦门,厦门大学附属第一医院神经外科
    471003 洛阳,河南科技大学第一附属医院急诊科
  • 收稿日期:2022-07-09 出版日期:2023-06-15
  • 通信作者: 王占祥

Current status of diagnosis and treatment of progressive hemorrhagic injury after traumatic brain injury

Jiawei He, Liang Zhang, Qi Yang, Zhanxiang Wang()   

  1. Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, Xiamen 361102, China
    Department of Emergency, the First Affiliated Hospital of He'nan University of Science and Technology, Luoyang 471003, China
  • Received:2022-07-09 Published:2023-06-15
  • Corresponding author: Zhanxiang Wang
  • Supported by:
    National Natural Science Foundation of China(82072777); Key Medical and Health Projects in Xiamen(3502Z20209005)
引用本文:

何佳伟, 张良, 杨骐, 王占祥. 创伤性颅脑损伤后进展性出血性损伤的诊疗现状[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(03): 175-179.

Jiawei He, Liang Zhang, Qi Yang, Zhanxiang Wang. Current status of diagnosis and treatment of progressive hemorrhagic injury after traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(03): 175-179.

创伤性颅脑损伤(TBI)的发病率和死亡率较高,术后易出现各种并发症,导致患者预后不良。进展性出血性损伤(PHI)是TBI后最严重的并发症之一,会显著增加患者死亡率。目前关于PHI的定义、发生机制、相关标志物尚不统一,本文主要结合相关文献综述目前关于TBI后PHI相关的研究进展,以期为临床工作提供一定的参考。

Traumatic brain injury (TBI) has a high morbidity and mortality, which is prone to various complications, leading to a poor prognosis of patients. Progressive hemorrhagic injury (PHI) is one of the most serious complications after TBI, and can significantly increase patient mortality. At present, the definition, occurrence mechanism and related markers of PHI are not unified. This paper mainly reviews the current research progress of PHI after TBI combined with relevant literature, in order to provide some reference for clinical work.

[1]
Jochems D, van Wessem KJP, Houwert RM, et al. Outcome in patients with isolated moderate to severe traumatic brain injury[J]. Crit Care Res Pract, 2018, 2018: 3769418. DOI: 10.1155/2018/3769418.
[2]
Alali AS, Burton K, Fowler RA, et al. Economic evaluations in the diagnosis and management of traumatic brain injury: a systematic review and analysis of quality[J]. Value Health, 2015, 18(5): 721-734. DOI: 10.1016/j.jval.2015.04.012.
[3]
Taylor CA, Bell JM, Breiding MJ, et al. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - united states, 2007 and 2013[J]. MMWR Surveill Summ, 2017, 66(9): 1-16. DOI: 10.15585/mmwr.ss6609a1.
[4]
Folkerson LE, Sloan D, Cotton BA, et al. Predicting progressive hemorrhagic injury from isolated traumatic brain injury and coagulation[J]. Surgery, 2015, 158(3): 655-661. DOI: 10.1016/j.surg.2015.02.029.
[5]
Cepeda S, Gómez PA, Castaño-Leon AM, et al. Traumatic intracerebral hemorrhage: risk factors associated with progression[J]. J Neurotrauma, 2015, 32(16): 1246-1253. DOI: 10.1089/neu.2014.3808.
[6]
Oertel M, Kelly DF, McArthur D, et al. Progressive hemorrhage after head trauma: predictors and consequences of the evolving injury[J]. J Neurosurg, 2002, 96(1): 109-116. DOI: 10.3171/jns.2002.96.1.0109.
[7]
Stein SC, Young GS, Talucci RC, et al. Delayed brain injury after head trauma: significance of coagulopathy[J]. Neurosurgery, 1992, 30(2): 160-165. DOI: 10.1227/00006123-199202000-00002.
[8]
White CL, Griffith S, Caron JL. Early progression of traumatic cerebral contusions: characterization and risk factors[J]. J Trauma, 2009, 67(3): 508-514; discussion 514-515. DOI: 10.1097/TA.0b013e3181b2519f.
[9]
Webb AJ, Brown CS, Naylor RM, et al. Thromboelastography is a marker for clinically significant progressive hemorrhagic injury in severe traumatic brain injury[J]. Neurocrit Care, 2021, 35(3): 738-746. DOI: 10.1007/s12028-021-01217-0.
[10]
Vedantam A, Yamal JM, Rubin ML, et al. Progressive hemorrhagic injury after severe traumatic brain injury: effect of hemoglobin transfusion thresholds[J]. J Neurosurg, 2016, 125(5): 1229-1234. DOI: 10.3171/2015.11.JNS151515.
[11]
Yuan Q, Sun YR, Wu X, et al. Coagulopathy in traumatic brain injury and its correlation with progressive hemorrhagic injury: a systematic review and meta-analysis[J]. J Neurotrauma, 2016, 33(14): 1279-1291. DOI: 10.1089/neu.2015.4205.
[12]
van Gent JAN, van Essen TA, Bos MHA, et al. Coagulopathy after hemorrhagic traumatic brain injury, an observational study of the incidence and prognosis[J]. Acta Neurochir (Wien), 2020, 162(2): 329-336. DOI: 10.1007/s00701-019-04111-z.
[13]
Tian Y, Salsbery B, Wang M, et al. Brain-derived microparticles induce systemic coagulation in a murine model of traumatic brain injury[J]. Blood, 2015, 125(13): 2151-2159. DOI: 10.1182/blood-2014-09-598805.
[14]
Liu J, Tian HL. Relationship between trauma-induced coagulopathy and progressive hemorrhagic injury in patients with traumatic brain injury[J]. Chin J Traumatol, 2016, 19(3): 172-175. DOI: 10.1016/j.cjtee.2016.01.011.
[15]
Díaz-Romero R, Avendaño P, Coloma G. Life-threatening paradoxical brain herniation rapidly reversed by emergency cranioplasty repair: a case report[J]. Acta Neurochir (Wien), 2015, 157(11): 2031-2032. DOI: 10.1007/s00701-015-2569-3.
[16]
Wan X, Fan T, Wang S, et al. Progressive hemorrhagic injury in patients with traumatic intracerebral hemorrhage: characteristics, risk factors and impact on management[J]. Acta Neurochir (Wien), 2017, 159(2): 227-235. DOI: 10.1007/s00701-016-3043-6.
[17]
Carnevale JA, Segar DJ, Powers AY, et al. Blossoming contusions: identifying factors contributing to the expansion of traumatic intracerebral hemorrhage[J]. J Neurosurg, 2018, 129(5): 1305-1316. DOI: 10.3171/2017.7.JNS17988.
[18]
Rehman L, Afzal A, Aziz HF, et al. Radiological parameters to predict hemorrhagic progression of traumatic contusional brain injury[J]. J Neurosci Rural Pract, 2019, 10(2): 212-217. DOI: 10.4103/jnrp.jnrp_335_18.
[19]
Allison RZ, Nakagawa K, Hayashi M, et al. Derivation of a predictive score for hemorrhagic progression of cerebral contusions in moderate and severe traumatic brain injury[J]. Neurocrit Care, 2017, 26(1): 80-86. DOI: 10.1007/s12028-016-0303-5.
[20]
Di G, Liu H, Jiang X, et al. Clinical predictors of progressive hemorrhagic injury in children with mild traumatic brain injury[J]. Front Neurol, 2017, 8: 560. DOI: 10.3389/fneur.2017.00560.
[21]
Kim WH, Lim DJ, Kim SH, et al. Is routine repeated head CT necessary for all pediatric traumatic brain injury?[J]. J Korean Neurosurg Soc, 2015, 58(2): 125-130. DOI: 10.3340/jkns.2015.58.2.125.
[22]
Picetti E, Rossi S, Abu-Zidan FM, et al. WSES consensus conference guidelines: monitoring and management of severe adult traumatic brain injury patients with polytrauma in the first 24 hours[J]. World J Emerg Surg, 2019, 14: 53. DOI: 10.1186/s13017-019-0270-1.
[23]
Martin G, Shah D, Elson N, et al. Relationship of coagulopathy and platelet dysfunction to transfusion needs after traumatic brain injury[J]. Neurocrit Care, 2018, 28(3): 330-337. DOI: 10.1007/s12028-017-0485-5.
[24]
Gratz J, Güting H, Thorn S, et al. Protocolised thromboelastometric-guided haemostatic management in patients with traumatic brain injury: a pilot study[J]. Anaesthesia, 2019, 74(7): 883-890. DOI: 10.1111/anae.14670.
[25]
Zhang J, He M, Song Y, et al. Prognostic role of D-dimer level upon admission in patients with traumatic brain injury[J]. Medicine (Baltimore), 2018, 97(31): e11774. DOI: 10.1097/MD.0000000000011774.
[26]
Zhao H, Cai X, Liu N, et al. Thromboelastography as a tool for monitoring blood coagulation dysfunction after adequate fluid resuscitation can predict poor outcomes in patients with septic shock[J]. J Chin Med Assoc, 2020, 83(7): 674-677. DOI: 10.1097/JCMA.0000000000000345.
[27]
Peng Q, Zhao J, Wang P, et al. Expressions of plasma cystatin C, D-dimer and hypersensitive C-reactive protein in patients with intracranial progressive hemorrhagic injury after craniocerebral injury, and their clinical significance[J]. Arq Neuropsiquiatr, 2019, 77(6): 381-386. DOI: 10.1590/0004-282X20190057.
[28]
Fujiwara G, Okada Y, Sakakibara T, et al. The association between D-dimer levels and long-term neurological outcomes of patients with traumatic brain injury: an analysis of a nationwide observational neurotrauma database in Japan[J]. Neurocrit Care, 2022, 36(2): 483-491. DOI: 10.1007/s12028-021-01329-7.
[29]
Karsy M, Kim R, Azab M, et al. Higher admission D-dimer values are associated with an increased risk of nonroutine discharge in neurosurgery patients[J]. Cureus, 2020, 12(7): e9425. DOI: 10.7759/cureus.9425.
[30]
Sheng J, Chen W, Zhuang D, et al. A clinical predictive nomogram for traumatic brain parenchyma hematoma progression[J]. Neurol Ther, 2022, 11(1): 185-203. DOI: 10.1007/s40120-021-00306-8.
[31]
Xu DX, Du WT, Li X, et al. D-dimer/fibrinogen ratio for the prediction of progressive hemorrhagic injury after traumatic brain injury[J]. Clin Chim Acta, 2020, 507: 143-148. DOI: 10.1016/j.cca.2020.04.022.
[32]
Joseph B, Aziz H, Zangbar B, et al. Acquired coagulopathy of traumatic brain injury defined by routine laboratory tests: which laboratory values matter?[J]. J Trauma Acute Care Surg, 2014, 76(1): 121-125. DOI: 10.1097/TA.0b013e3182a9cc95.
[33]
Jha RM, Zusman BE, Puccio AM, et al. Genetic variants associated with intraparenchymal hemorrhage progression after traumatic brain injury[J]. JAMA Netw Open, 2021, 4(7): e2116839. DOI: 10.1001/jamanetworkopen.2021.16839.
[34]
Esnault P, Mathais Q, D'Aranda E, et al. Ability of fibrin monomers to predict progressive hemorrhagic injury in patients with severe traumatic brain injury[J]. Neurocrit Care, 2020, 33(1): 182-195. DOI: 10.1007/s12028-019-00882-6.
[35]
Tréguier Y, Bull-Maurer A, Roingeard P. Apolipoprotein E, a crucial cellular protein in the lifecycle of hepatitis viruses[J]. Int J Mol Sci, 2022, 23(7): 3676. DOI: 10.3390/ijms23073676.
[36]
Hellstrøm T, Andelic N, Holthe Ø, et al. APOE-ε4 is associated with reduced verbal memory performance and higher emotional, cognitive, and everyday executive function symptoms two months after mild traumatic brain injury[J]. Front Neurol, 2022, 13: 735206. DOI: 10.3389/fneur.2022.735206.
[37]
Yousefvand S, Hadjzadeh MA, Keshavarzi Z, et al. Effects of prolactin on movement disorders and APOE, GFAP, and PRL receptor gene expression following intracerebral hemorrhage in rats[J]. Iran J Basic Med Sci, 2021, 24(12): 1709-1716. DOI: 10.22038/IJBMS.2021.58176.12927.
[38]
Wan X, Gan C, You C, et al. Association of APOE ε4 with progressive hemorrhagic injury in patients with traumatic intracerebral hemorrhage[J]. J Neurosurg, 2019, Online ahead of print.
[39]
Tzioras M, Davies C, Newman A, et al. Invited Review: APOE at the interface of inflammation, neurodegeneration and pathological protein spread in Alzheimer's disease[J]. Neuropathol Appl Neurobiol, 2019, 45(4): 327-346. DOI: 10.1111/nan.12529.
[40]
Stanczykiewicz B, Gburek J, Rutkowska M, et al. Ovocystatin induced changes in expression of Alzheimer's disease relevant proteins in APP/PS1 transgenic mice[J]. J Clin Med, 2022, 11(9): 2372. DOI: 10.3390/jcm11092372.
[41]
Huang HZ, Qiu M, Lin JZ, et al. Potential effect of tropical fruits Phyllanthus emblica L. for the prevention and management of type 2 diabetic complications: a systematic review of recent advances[J]. Eur J Nutr, 2021, 60(7): 3525-3542. DOI: 10.1007/s00394-020-02471-2.
[42]
Karri J, Cardenas JC, Matijevic N, et al. Early fibrinolysis associated with hemorrhagic progression following traumatic brain injury[J]. Shock, 2017, 48(6): 644-650. DOI: 10.1097/SHK.0000000000000912.
[43]
Allard CB, Scarpelini S, Rhind SG, et al. Abnormal coagulation tests are associated with progression of traumatic intracranial hemorrhage[J]. J Trauma, 2009, 67(5): 959-967. DOI: 10.1097/TA.0b013e3181ad5d37.
[44]
Wu X, Du Z, Yu J, et al. Activity of factor VII in patients with isolated blunt traumatic brain injury: association with coagulopathy and progressive hemorrhagic injury[J]. J Trauma Acute Care Surg, 2014, 76(1): 114-120. DOI: 10.1097/TA.0b013e3182a8fe48.
[45]
Chen T, Chen S, Wu Y, et al. A predictive model for postoperative progressive haemorrhagic injury in traumatic brain injuries[J]. BMC Neurol, 2022, 22(1): 16. DOI: 10.1186/s12883-021-02541-w.
[46]
Thurman DJ. The epidemiology of traumatic brain injury in children and youths: a review of research since 1990[J]. J Child Neurol, 2016, 31(1): 20-27. DOI: 10.1177/0883073814544363.
[47]
Hu GW, Lang HL, Guo H, et al. A risk score based on admission characteristics to predict progressive hemorrhagic injury from traumatic brain injury in children[J]. Eur J Pediatr, 2017, 176(6): 689-696. DOI: 10.1007/s00431-017-2897-9.
[48]
Yamashita Y, Uozumi R, Hamatani Y, et al. Current status and outcomes of direct oral anticoagulant use in real-world atrial fibrillation patients-Fushimi AF Registry[J]. Circ J, 2017, 81(9): 1278-1285. DOI: 10.1253/circj.CJ-16-1337.
[49]
Koyama H, Yagi K, Hara K, et al. Combination therapy using prothrombin complex concentrate and vitamin K in anticoagulated patients with traumatic intracranial hemorrhage prevents progressive hemorrhagic injury: a historically controlled study[J]. Neurol Med Chir (Tokyo), 2021, 61(1): 47-54. DOI: 10.2176/nmc.oa.2020-0252.
[50]
Steiner T, Poli S, Griebe M, et al. Fresh frozen plasma versus prothrombin complex concentrate in patients with intracranial haemorrhage related to vitamin K antagonists (INCH): a randomised trial[J]. Lancet Neurol, 2016, 15(6): 566-573. DOI: 10.1016/S1474-4422(16)00110-1.
[51]
Jehan F, Aziz H, OʼKeeffe T, et al. The role of four-factor prothrombin complex concentrate in coagulopathy of trauma: a propensity matched analysis[J]. J Trauma Acute Care Surg, 2018, 85(1): 18-24. DOI: 10.1097/TA.0000000000001938.
[52]
Munlemvo DM, Tobias JD, Chenault KM, et al. Prothrombin complex concentrates to treat coagulation disturbances: an overview with a focus on use in infants and children[J]. Cardiol Res, 2022, 13(1): 18-26. DOI: 10.14740/cr1342.
[53]
Zeeshan M, Hamidi M, Kulvatunyou N, et al. 3-factor versus 4-factor PCC in coagulopathy of trauma: four is better than three[J]. Shock, 2019, 52(1): 23-28. DOI: 10.1097/SHK.0000000000001240.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[3] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[4] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[5] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[6] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[7] 郑大雯, 王健东. 胆囊癌辅助诊断研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 769-773.
[8] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[9] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[10] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[11] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[12] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[13] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
[14] 胡云鹤, 周玉焯, 付瑞瑛, 于凡, 李爱东. CHS-DRG付费制度下GB1分组住院费用影响因素分析与管理策略探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 568-574.
[15] 朱旦华, 卢放根. 以腹水为主要特征的Castleman病16例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 462-473.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?