切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2023, Vol. 09 ›› Issue (01) : 12 -18. doi: 10.3877/cma.j.issn.2095-9141.2023.01.003

临床研究

七氟醚与丙泊酚对慢性意识障碍患者全身麻醉期间脑电的影响
李青华1, 靳晨彦1, 王艳军1, 庄禹童2, 何江弘3, 郭文治4,()   
  1. 1. 030001 太原,山西医科大学麻醉学院
    2. 510515 广州,南方医科大学第二临床医学院神经外科
    3. 100070 北京,首都医科大学附属北京天坛医院神经外科
    4. 100010 北京,解放军总医院第七医学中心麻醉科
  • 收稿日期:2022-11-08 出版日期:2023-02-15
  • 通信作者: 郭文治

Effects of sevoflurane and propofol on electroencephalography during general anesthesia in patients with prolonged disorders of consciousness

Qinghua Li1, Chenyan Jin1, Yanjun Wang1, Yutong Zhuang2, Jianghong He3, Wenzhi Guo4,()   

  1. 1. College of Anesthesiology, Shanxi Medical University, Taiyuan 030001, China
    2. Department of Neurosurgery, The Second Clinical College of Southern Medical University, Guangzhou 510515, China
    3. Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
    4. Department of Anesthesiology, The Seventh Medical Center of PLA General Hospital, Beijing 100010, China
  • Received:2022-11-08 Published:2023-02-15
  • Corresponding author: Wenzhi Guo
  • Supported by:
    National Natural Science Foundation of China(81771128)
引用本文:

李青华, 靳晨彦, 王艳军, 庄禹童, 何江弘, 郭文治. 七氟醚与丙泊酚对慢性意识障碍患者全身麻醉期间脑电的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 12-18.

Qinghua Li, Chenyan Jin, Yanjun Wang, Yutong Zhuang, Jianghong He, Wenzhi Guo. Effects of sevoflurane and propofol on electroencephalography during general anesthesia in patients with prolonged disorders of consciousness[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(01): 12-18.

目的

探讨七氟醚吸入麻醉与丙泊酚静脉麻醉对慢性意识障碍(pDoC)患者围术期脑电的影响。

方法

前瞻性纳入解放军总医院第七医学中心神经外科和首都医科大学附属天坛医院神经外科自2022年1月至8月拟行短程脊髓电刺激术(st-SCS)的20例pDoC患者,按照随机数字表法分为七氟醚组(10例)和丙泊酚组(10例)。采用19通道脑电设备记录2组患者麻醉前、麻醉中、麻醉后3个时间段全脑的脑电活动变化。

结果

2组患者麻醉中的脑电功率谱均以δ功率增加,θ、β、γ功率减少为特征。麻醉后,七氟醚组较丙泊酚组有更多的快波活动(θ+α+β)和更少的慢波活动(δ)。脑电指标区分清醒和麻醉状态的ROC曲线显示,以额叶区域的置换熵(PE)和置换Lempel-Ziv复杂度(PLZC)指标区分度最好,丙泊酚额叶PE(AUC:0.865)大于七氟醚额叶PE(AUC:0.815),丙泊酚额叶PLCZ(AUC:0.865)大于七氟醚(AUC:0.810)。

结论

七氟醚与丙泊酚对pDoC患者麻醉状态的脑电活动影响是类似的,但七氟醚组比丙泊酚组具有更好的苏醒后表现。脑电监测对评估全麻期间意识状态有重要意义,快慢波功率比值、PE、PLZC等作为表征麻醉深度的脑电指标在pDoC患者中表现出较强的适用性,额叶区域的PE和PLZC区分清醒和麻醉的能力最强。

Objective

To investigate the effects of sevoflurane inhalation anesthesia and propofol intravenous anesthesia on electroencephalogram (EEG) in patients with prolonged disorders of consciousness (pDoC) during perioperative period.

Methods

Twenty patients with pDoC who planned to undergo short-range electrical stimulation of the spinal cord (st-SCS) in Neurosurgery Department of The Seventh Medical Center of PLA General Hospital, and the Neurosurgery Department of Beijing Tiantan Hospital, Capital Medical University from January to August 2022, were prospectively included, and divided into sevoflurane group (10 cases) and propofol group (10 cases) according to the random number table. The 19-channel EEG equipment was used to record the changes of brain electrical activity before, during and after anesthesia in both groups.

Results

The EEG power spectra during anesthesia in both groups were characterized by an increase in δ power and a decrease in θ, β and γ power. After anesthesia, sevoflurane group had more fast wave activity (θ+α+β) and less slow wave activity (δ) than propofol group. The area under the ROC curve of EEG indicators which distinguish awake and anesthesia states showed that permutation entropy (PE) and permutation Lempel-Ziv complexity (PLZC) in the frontal lobe region were the best indicators of discrimination, propofol frontal lobe PE (AUC: 0.865) >sevoflurane frontal lobe PE (AUC: 0.815), propofol frontal lobe PLCZ (AUC: 0.865) >sevoflurane (AUC: 0.810).

Conclusion

Sevoflurane and propofol have similar effects on brain electrical activity in pDoC patients under anesthesia, but sevoflurane group has better performance than propofol group after awakening. EEG monitoring is of great significance to evaluate the state of consciousness during general anesthesia. The ratio of fast and slow wave power, PE and PLZC as EEG indicators to describe the depth of anesthesia shows strong applicability in patients with prolonged disorders of consciousness. The PE and PLZC of frontal lobe can distinguish awake from anesthesia best.

表1 2组患者的一般资料比较
Tab.1 Comparison of general data of the two groups
图1 2组患者麻醉前、中、后的平均脑地形图A:七氟醚组;B:丙泊酚组
Fig.1 The average brain topography of the two groups before, during, and after anesthesia
图2 2组患者麻醉前、中、后的脑电相对功率谱变化A:七氟醚组;B:丙泊酚组;与麻醉前比较,aP<0.05
Fig.2 Changes in relative power spectra before, during, and after anesthesia in two groups
图3 麻醉前(T0)、中(T1)、后(T2)快慢波功率比值变化
Fig.3 Changes in fast and slow wave power ratios before (T0), during (T1), and after (T2) anesthesia
图4 丙泊酚与七氟醚额叶PE、PLCZ的ROC曲线
Fig.4 ROC curves of PE and PLCZ in the frontal lobe between propofol and sevoflurane
表2 区分清醒、麻醉状态的脑电指标
Tab.2 EEG indicators that distinguish awake from anesthetized states
[1]
Thibaut A, Schiff N, Giacino J, et al. Therapeutic interventions in patients with prolonged disorders of consciousness[J]. Lancet Neurol, 2019, 18(6): 600-614. DOI: 10.1016/S1474-4422(19)30031-6.
[2]
中国医师协会神经修复专业委员会意识障碍与促醒学组.慢性意识障碍诊断与治疗中国专家共识[J].中华神经医学杂志, 2020, 19(10): 977-982. DOI: 10.3760/cma.j.cn115354-20200701-00525.
[3]
Lemaire JJ, Sontheimer A, Pereira B, et al. Deep brain stimulation in five patients with severe disorders of consciousness[J]. Ann Clin Transl Neurol, 2018, 5(11): 1372-1384. DOI: 10.1002/acn3.648.
[4]
Yang Y, He Q, Xia X, et al. Long-term functional prognosis and related factors of spinal cord stimulation in patients with disorders of consciousness[J]. CNS Neurosci Ther, 2022, 28(8): 1249-1258. DOI: 10.1111/cns.13870.
[5]
Zhuang Y, Yang Y, Xu L, et al. Effects of short-term spinal cord stimulation on patients with prolonged disorder of consciousness: a pilot study[J]. Front Neurol, 2022, 13: 1026221. DOI: 10.3389/fneur.2022.1026221.
[6]
Bruno MA, Vanhaudenhuyse A, Thibaut A, et al. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness[J]. J Neurol, 2011, 258(7): 1373-1384. DOI: 10.1007/s00415-011-6114-x.
[7]
Giacino JT, Fins JJ, Laureys S, et al. Disorders of consciousness after acquired brain injury: the state of the science[J]. Nat Rev Neurol, 2014, 10(2): 99-114. DOI: 10.1038/nrneurol.2013.279.
[8]
Höller Y. Quantitative EEG in cognitive neuroscience[J]. Brain Sci, 2021, 11(4): 517. DOI: 10.3390/brainsci11040517.
[9]
Ballanti S, Campagnini S, Liuzzi P, et al. EEG-based methods for recovery prognosis of patients with disorders of consciousness: a systematic review[J]. Clin Neurophysiol, 2022, 144: 98-114. DOI: 10.1016/j.clinph.2022.09.017.
[10]
Fellinger R, Klimesch W, Schnakers C, et al. Cognitive processes in disorders of consciousness as revealed by EEG time-frequency analyses[J]. Clin Neurophysiol, 2011, 122(11): 2177-2184. DOI: 10.1016/j.clinph.2011.03.004.
[11]
Liang Z, Wang Y, Sun X, et al. EEG entropy measures in anesthesia[J]. Front Comput Neurosci, 2015, 9: 16. DOI: 10.3389/fncom.2015.00016.
[12]
Borowska M. Multiscale permutation Lempel-Ziv complexity measure for biomedical signal analysis: interpretation and application to focal EEG signals[J]. Entropy (Basel), 2021, 23(7): 832. DOI: 10.3390/e23070832.
[13]
Schraag S, Flaschar J, Schleyer M, et al. The contribution of remifentanil to middle latency auditory evoked potentials during induction of propofol anesthesia[J]. Anesth Analg, 2006, 103(4): 902-907. DOI: 10.1213/01.ane.0000237282.76394.6b.
[14]
Struys MM, Vereecke H, Moerman A, et al. Ability of the bispectral index, autoregressive modelling with exogenous input-derived auditory evoked potentials, and predicted propofol concentrations to measure patient responsiveness during anesthesia with propofol and remifentanil[J]. Anesthesiology, 2003, 99(4): 802-812. DOI: 10.1097/00000542-200310000-00010.
[15]
Menascu S, Mohamed I, Tshechmer SM, et al. The significance of frontal intermittent rhythmic delta activity in children[J]. Can J Neurol Sci, 2010, 37(5): 656-661. DOI: 10.1017/s0317167100010854.
[16]
Shtoots L, Dagan T, Levine J, et al. The effects of theta EEG neurofeedback on the consolidation of spatial memory[J]. Clin EEG Neurosci, 2021, 52(5): 338-344. DOI: 10.1177/1550059420973107.
[17]
Bays BC, Visscher KM, Le Dantec CC, et al. Alpha-band EEG activity in perceptual learning[J]. J Vis, 2015, 15(10): 7. DOI: 10.1167/15.10.7.
[18]
Laufs H, Krakow K, Sterzer P, et al. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest[J]. Proc Natl Acad Sci U S A, 2003, 100(19): 11053-11058. DOI: 10.1073/pnas.1831638100.
[19]
Lechinger J, Bothe K, Pichler G, et al. CRS-R score in disorders of consciousness is strongly related to spectral EEG at rest[J]. J Neurol, 2013, 260(9): 2348-2356. DOI: 10.1007/s00415-013-6982-3.
[20]
Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics[J]. Nat Rev Neurosci, 2004, 5(9): 709-720. DOI: 10.1038/nrn1496.
[21]
Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal[J]. Nat Rev Neurosci, 2008, 9(5): 370-386. DOI: 10.1038/nrn2372.
[22]
Brown EN, Purdon PL, Van Dort CJ. General anesthesia and altered states of arousal: a systems neuroscience analysis[J]. Annu Rev Neurosci, 2011, 34: 601-628. DOI: 10.1146/annurev-neuro-060909-153200.
[23]
Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics[J]. N Engl J Med, 2003, 348(21): 2110-2124. DOI: 10.1056/NEJMra021261.
[24]
Ružman T, Šimurina T, Gulam D, et al. Sevoflurane preserves regional cerebral oxygen saturation better than propofol: Randomized controlled trial[J]. J Clin Anesth, 2017, 36: 110-117. DOI: 10.1016/j.jclinane.2016.10.010.
[25]
Lim BG, Shen FY, Kim YB, et al. Possible role of GABAergic depolarization in neocortical neurons in generating hyperexcitatory behaviors during emergence from sevoflurane anesthesia in the rat[J]. ASN Neuro, 2014, 6(2): e00141. DOI: 10.1042/AN20140004.
[26]
Brechmann T, Maier C, Kaisler M, et al. Propofol sedation during gastrointestinal endoscopy arouses euphoria in a large subset of patients[J]. United European Gastroenterol J, 2018, 6(4): 536-546. DOI: 10.1177/2050640617736231.
[27]
Tucker C, Sandhu K. The effectiveness of zolpidem for the treatment of disorders of consciousness[J]. Neurocrit Care, 2016, 24(3): 488-493. DOI: 10.1007/s12028-015-0227-5.
[28]
Noormandi A, Shahrokhi M, Khalili H. Potential benefits of zolpidem in disorders of consciousness[J]. Expert Rev Clin Pharmacol, 2017, 10(9): 983-992. DOI: 10.1080/17512433.2017.1347502.
[29]
Zhang B, O'Brien K, Won W, et al. A retrospective analysis on clinical practice-based approaches using zolpidem and lorazepam in disorders of consciousness[J]. Brain Sci, 2021, 11(6). DOI: 10.3390/brainsci11060726.
[30]
Hao Z, Xia X, Bai Y, et al. EEG evidence reveals zolpidem-related alterations and prognostic value in disorders of consciousness[J]. Front Neurosci, 2022, 16: 863016. DOI: 10.3389/fnins.2022.863016.
[31]
Kamenik M, Möller Petrun A. Bispectral index-guided induction of general anaesthesia[J]. Br J Anaesth, 2014, 112(1): 169. DOI: 10.1093/bja/aet445.
[32]
Kreuzer M, Kochs EF, Schneider G, et al. Non-stationarity of EEG during wakefulness and anaesthesia: advantages of EEG permutation entropy monitoring[J]. J Clin Monit Comput, 2014, 28(6): 573-580. DOI: 10.1007/s10877-014-9553-y.
[33]
Bai Y, Liang Z, Li X, et al. Permutation Lempel-Ziv complexity measure of electroencephalogram in GABAergic anaesthetics[J]. Physiol Meas, 2015, 36(12): 2483-2501. DOI: 10.1088/0967-3334/36/12/2483.
[34]
Li D, Fabus MS, Sleigh JW. Brain Complexities and Anesthesia: Their Meaning and Measurement[J]. Anesthesiology, 2022, 137(3): 290-302. DOI: 10.1097/ALN.0000000000004293.
[35]
Pritchett S, Zilberg E, Xu ZM, et al. Peak and averaged bicoherence for different EEG patterns during general anaesthesia[J]. Biomed Eng Online, 2010, 9: 76. DOI: 10.1186/1475-925X-9-76.
[36]
Miyake W, Oda Y, Ikeda Y, et al. Electroencephalographic response following midazolam-induced general anesthesia: relationship to plasma and effect-site midazolam concentrations[J]. J Anesth, 2010, 24(3): 386-393. DOI: 10.1007/s00540-010-0907-4.
[1] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[2] 周顺, 赵素侠, 时静静, 吴双双, 吴圆圆, 李金山. 丙泊酚-舒芬太尼复合七氟烷吸入对小儿腹腔镜疝囊高位结扎术的麻醉效果及安全性[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 603-607.
[3] 曾凯旋, 何国安. 丙泊酚与七氟烷在老年腹股沟疝腹腔镜手术的应用效果及安全性比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(03): 316-321.
[4] 李鑫, 高元丽, 经俊, 陆星, 马臻. 纳布啡复合丙泊酚在腹腔镜经腹腹膜前腹股沟疝修补术中的应用研究[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 191-195.
[5] 陈静, 张春明, 周斌, 吴明明. 甲苯磺酸瑞马唑仑联合瑞芬太尼全身麻醉对胸腔镜肺叶切除患者术后应激反应及血清PAF、γ干扰素的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 554-556.
[6] 段文忠, 白延霞, 徐文亭, 祁虹霞, 吕志坚. 七氟烷和丙泊酚在肝切除术中麻醉效果比较Meta分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 640-645.
[7] 冀京雷, 李秀丽, 贾亚男, 冯会敏, 刘丽艳. 改良aEEG评分评估高危足月低体质量新生儿脑损伤的效果分析[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 165-169.
[8] 吴新高, 李伟, 马俊, 刘红, 黄平. 癫痫患者定量脑电图功率谱相关参数与认知功能损伤的相关性研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 304-308.
[9] 杨新宇, 彭建文, 李辉萍, 陶希, 方翠霓, 宋涛. 脑电非线性分析在卒中后意识障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 185-190.
[10] 梁玉兰, 陈亮, 曾令梅. NLR、RDW水平联合振幅整合脑电图在缺氧缺血性脑病患儿的预后研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 84-89.
[11] 孟永生, 雍容, 吉晓丽, 赵钰龙, 赵鹏飞. 右美托咪定复合七氟醚对脑出血继发性损伤的预防效果及神经保护机制分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(01): 44-50.
[12] 隋金玲, 张爱萍, 许旭东. 右美托咪定复合瑞芬太尼在内镜逆行胰胆管造影术老年患者中的麻醉效果[J]. 中华消化病与影像杂志(电子版), 2022, 12(06): 357-360.
[13] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[14] 喇宏玲, 李育耕, 阿里木江·司马义, 徐桂萍, 苏涛. 右美托咪定复合舒芬太尼应用于肥胖患者无痛胃镜检查清醒镇静的效果[J]. 中华胃食管反流病电子杂志, 2023, 10(02): 77-81.
[15] 潘鑫, 王华, 王忻, 顾慧, 王超. 院前右美托咪啶与丙泊酚对需要机械通气的成人危重症患者镇静效果的比较[J]. 中华卫生应急电子杂志, 2022, 08(06): 331-334.
阅读次数
全文


摘要