切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2023, Vol. 09 ›› Issue (04) : 246 -252. doi: 10.3877/cma.j.issn.2095-9141.2023.04.009

综述

颅内压监测技术在创伤性颅脑损伤治疗中的应用
张馨月, 韩帅, 张舒石, 李文臣, 张舒岩()   
  1. 130021 长春,吉林大学第一医院临床研究部
    130021 长春,吉林大学第一医院神经创伤外科
    130051 长春,长春市人民医院伽马刀治疗中心
  • 收稿日期:2023-04-03 出版日期:2023-08-15
  • 通信作者: 张舒岩

Application of intracranial pressure monitoring technique in the treatment of traumatic brain injury

Xinyue Zhang, Shuai Han, Shushi Zhang, Wenchen Li, Shuyan Zhang()   

  1. Department of Clinical Research, The First Hospital of Jilin University, Changchun 130021, China
    Department of Neurotrauma, The First Hospital of Jilin University, Changchun 130021, China
    Gamma Knife Treatment Center of Changchun People’s Hospital, Changchun 130051, China
  • Received:2023-04-03 Published:2023-08-15
  • Corresponding author: Shuyan Zhang
  • Supported by:
    Science and Technology Department of Jilin Province(20200404143YY)
引用本文:

张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.

Xinyue Zhang, Shuai Han, Shushi Zhang, Wenchen Li, Shuyan Zhang. Application of intracranial pressure monitoring technique in the treatment of traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(04): 246-252.

颅内压(ICP)是颅腔的内容物对颅腔壁产生的压力。当创伤性颅脑损伤(TBI)患者的ICP持续增高时,可能会引起一系列神经损害,甚至形成脑疝致呼吸循环衰竭而死亡。而以ICP监测为主的多模态监测技术的出现,使临床医师在救治TBI患者时能够实时动态地监测ICP及其相关参数变化。目前有创监测技术以脑室型ICP监测为主,结果最为准确;而多种新型无创监测技术也受到广泛关注和研究。本文主要针对多模态ICP监测技术在TBI治疗中的应用展开综述,并结合文献比较各种监测技术的优劣,为临床选择相应监测方法提供依据。

Intracranial pressure (ICP) is the pressure exerted by the contents of the skull cavity on the wall of the skull cavity. When ICP levels continue to increase in patients with traumatic brain injury (TBI), it may cause a series of nerve damage, and even lead to brain herniation leading to respiratory and circulatory failure and death. The emergence of multi-modal monitoring technology based on ICP monitoring enables clinicians to dynamically and real-time monitor the changes of ICP and related parameters in the treatment of TBI patients. At present, invasive monitoring techniques mainly focus on ventricular type ICP monitoring, with the most accurate results; while many new non-invasive monitoring techniques have also been widely concerned and studied. This article mainly reviews the application of multimodal ICP monitoring technology in TBI treatment, and compares the advantages and disadvantages of various monitoring technologies based on literature, providing a basis for clinical selection of corresponding monitoring methods.

表1 ICP及相关的多模态监测技术优缺点
Tab.1 Advantages and disadvantages of ICP and related multi-modal monitoring techniques
[1]
Meyfroidt G, Bouzat P, Casaer MP, et al. Management of moderate to severe traumatic brain injury: an update for the intensivist[J]. Intensive Care Med, 2022, 48(6): 649-666. DOI: 10.1007/s00134-022-06702-4.
[2]
Rakhit S, Nordness MF, Lombardo SR, et al. Management and Challenges of Severe Traumatic Brain Injury[J]. Semin Respir Crit Care Med, 2021, 42(1): 127-144. DOI: 10.1055/s-0040-1716493.
[3]
Han J, Yang S, Zhang C, et al. Impact of intracranial pressure monitoring on prognosis of patients with severe traumatic brain injury: a PRISMA systematic review and meta-analysis[J]. Medicine (Baltimore), 2016, 95(7): e2827. DOI: 10.1097/MD.0000000000002827.
[4]
Tas J, Czosnyka M, Van Der Horst ICC, et al. Cerebral multimodality monitoring in adult neurocritical care patients with acute brain injury: a narrative review[J]. Front Physiol, 2022, 13: 1071161. DOI: 10.3389/fphys.2022.1071161.
[5]
Wijdicks EFM. Lundberg and his Waves[J]. Neurocrit Care, 2019, 31(3): 546-549. DOI: 10.1007/s12028-019-00689-5.
[6]
中国医师协会神经外科医师分会、中国神经创伤专家委员会.中国颅脑创伤颅内压监测专家共识[J].中华神经外科杂志, 2011, 27(10): 1073-1074. DOI: 10.3760/cma.j.issn.1001-2346.2011.10.033.
[7]
Wolthers SA, Engelholm CP, Uslu B, et al. Noninvasive intracranial pressure monitoring in central nervous system infections[J]. Minerva Anestesiol, 2023, 89(3): 206-216. DOI: 10.23736/S0375-9393.22.16863-X.
[8]
张尚明,胡晓芳,陈宏颉,等.脑室型颅内压监测在颅脑外伤后脑疝患者梯度减压术中的应用价值分析[J].中华神经医学杂志, 2021, 20(5): 488-494. DOI: 10.3760/cma.j.cn115354-20210112-00024.
[9]
Cremer OL. Does ICP monitoring make a difference in neurocritical care?[J]. Eur J Anaesthesiol Suppl, 2008, 42: 87-93. DOI: 10.1017/S0265021507003237.
[10]
Pelah AI, Zakrzewska A, Calviello LA, et al. Accuracy of intracranial pressure monitoring-single centre observational study and literature review[J]. Sensors (Basel), 2023, 23(7): 3397. DOI: 10.3390/s23073397. DOI: 10.1016/j.accpm.2017.12.001.
[11]
Geeraerts T, Velly L, Abdennour L, et al. Management of severe traumatic brain injury (first 24hours)[J]. Anaesth Crit Care Pain Med, 2018, 37(2): 171-186. DOI: 10.1016/j.accpm.2017.12.001.
[12]
Kasprowicz M, Lalou DA, Czosnyka M, et al. Intracranial pressure, its components and cerebrospinal fluid pressure-volume compensation[J]. Acta Neurol Scand, 2016, 134(3): 168-180. DOI: 10.1111/ane.12541.
[13]
Zhu J, Shan Y, Li Y, et al. Spindle wave in intracranial pressure signal analysis for patients with traumatic brain injury: a single-center prospective observational cohort study[J]. Front Physiol, 2022, 13: 1043328. DOI: 10.3389/fphys.2022.1043328.
[14]
Kirkman MA, Smith M. Intracranial pressure monitoring, cerebral perfusion pressure estimation, and ICP/CPP-guided therapy: a standard of care or optional extra after brain injury?[J]. Br J Anaesth, 2014, 112(1): 35-46. DOI: 10.1093/bja/aet418.
[15]
Hasen M, Gomez A, Froese L, et al. Alternative continuous intracranial pressure-derived cerebrovascular reactivity metrics in traumatic brain injury: a scoping overview[J]. Acta Neurochir (Wien), 2020, 162(7): 1647-1662. DOI: 10.1007/s00701-020-04378-7.
[16]
Young AMH, Guilfoyle MR, Donnelly J, et al. Multimodality neuromonitoring in severe pediatric traumatic brain injury[J]. Pediatr Res, 2018, 83(1-1): 41-49. DOI: 10.1038/pr.2017.215.
[17]
Zhong JI, Li Y, Minhui X, et al. Realization of a comprehensive non-invasive detection of intracranial pressure analyzer based upon FVEP and TCD[J]. Acta Neurochir Suppl, 2012, 114: 127-129. DOI: 10.1007/978-3-7091-0956-4_23.
[18]
Zeiler FA, Czosnyka M, Smielewski P. Optimal cerebral perfusion pressure via transcranial Doppler in TBI: application of robotic technology[J]. Acta Neurochir (Wien), 2018, 160(11): 2149-2157. DOI: 10.1007/s00701-018-3687-5.
[19]
Padayachy LC, Figaji AA, Bullock MR. Intracranial pressure monitoring for traumatic brain injury in the modern era[J]. Childs Nerv Syst, 2010, 26(4): 441-452. DOI: 10.1007/s00381-009-1034-0.
[20]
Brandstätter H, Schulz P, Polunic I, et al. Purification and biochemical characterization of functional complement factor H from human plasma fractions[J]. Vox Sang, 2012, 103(3): 201-212. DOI: 10.1111/j.1423-0410.2012.01610.x.
[21]
Koziarz A, Sne N, Kegel F, et al. Optic nerve sheath diameter sonography for the diagnosis of increased intracranial pressure: a systematic review and meta-analysis protocol[J]. BMJ Open, 2017, 7(8): e016194. DOI: 10.1136/bmjopen-2017-016194.
[22]
Miller MT, Pasquale M, Kurek S, et al. Initial head computed tomographic scan characteristics have a linear relationship with initial intracranial pressure after trauma[J]. J Trauma, 2004, 56(5): 967-972; discussion 972-973. DOI: 10.1097/01.ta.0000123699.16465.8b.
[23]
Zhao YL, Zhou JY, Zhu GH. Clinical experience with the noninvasive ICP monitoring system[J]. Acta Neurochir Suppl, 2005, 95: 351-355. DOI: 10.1007/3-211-32318-x_72.
[24]
Herklots MW, Moudrous W, Oldenbeuving A, et al. Prospective evaluation of noninvasive headSense intracranial pressure monitor in traumatic brain injury patients undergoing invasive intracranial pressure monitoring[J]. World Neurosurg, 2017, 106: 557-562. DOI: 10.1016/j.wneu.2017.07.022.
[25]
Shanahan R, Avsar P, Watson C, et al. The impact of brain tissue oxygenation monitoring on the Glasgow outcome scale/Glasgow outcome scale extended in patients with moderate to severe traumatic brain injury: a systematic review[J]. Nurs Crit Care, 2023, Online ahead of print. DOI: 10.1111/nicc.12973.
[26]
Oddo M, Bösel J. Monitoring of brain and systemic oxygenation in neurocritical care patients[J]. Neurocrit Care, 2014, 21 Suppl 2: S103-S120. DOI: 10.1007/s12028-014-0024-6.
[27]
Skrifvars MB, Sekhon M, Åneman EA. Monitoring and modifying brain oxygenation in patients at risk of hypoxic ischaemic brain injury after cardiac arrest[J]. Crit Care, 2021, 25(1): 312. DOI: 10.1186/s13054-021-03678-3.
[28]
Guilfoyle MR, Helmy A, Donnelly J, et al. Characterising the dynamics of cerebral metabolic dysfunction following traumatic brain injury: a microdialysis study in 619 patients[J]. PLoS One, 2021, 16(12): e0260291. DOI: 10.1371/journal.pone.0260291.
[29]
Friedman D, Claassen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit[J]. Anesth Analg, 2009, 109(2): 506-523. DOI: 10.1213/ane.0b013e3181a9d8b5.
[30]
Nagai H, Moritake K, Takaya M. Correlation between transcranial Doppler ultrasonography and regional cerebral blood flow in experimental intracranial hypertension[J]. Stroke, 1997, 28(3): 603-607; discussion 608. DOI: 10.1161/01.str.28.3.603.
[31]
Singer KE, Wallen TE, Jalbert T, et al. Efficacy of noninvasive technologies in triaging traumatic brain injury and correlating with intracranial pressure: a prospective study[J]. J Surg Res, 2021, 262: 27-37. DOI: 10.1016/j.jss.2020.12.042.
[32]
Bonow RH, Young CC, Bass DI, et al. Transcranial Doppler ultrasonography in neurological surgery and neurocritical care[J]. Neurosurg Focus, 2019, 47(6): E2. DOI: 10.3171/2019.9.FOCUS19611.
[33]
Varsos GV, Kolias AG, Smielewski P, et al. A noninvasive estimation of cerebral perfusion pressure using critical closing pressure[J]. J Neurosurg, 2015, 123(3): 638-648. DOI: 10.3171/2014.10.JNS14613.
[34]
Kasuga Y, Nagai H, Hasegawa Y, et al. Transmission characteristics of pulse waves in the intracranial cavity of dogs[J]. J Neurosurg, 1987, 66(6): 907-914. DOI: 10.3171/jns.1987.66.6.0907.
[35]
Rasulo FA, Bertuetti R. Transcranial Doppler and optic nerve sonography[J]. J Cardiothorac Vasc Anesth, 2019, 33 Suppl 1: S38-S52.
[36]
Oertel MF, Scharbrodt W, Wachter D, et al. Arteriovenous differences of oxygen and transcranial Doppler sonography in the management of aneurysmatic subarachnoid hemorrhage[J]. J Clin Neurosci, 2008, 15(6): 630-636. DOI: 10.1016/j.jocn.2007.04.003.
[37]
Jeon JP, Lee SU, Kim SE, et al. Correlation of optic nerve sheath diameter with directly measured intracranial pressure in Korean adults using bedside ultrasonography[J]. PLoS One, 2017, 12(9): e0183170. DOI: 10.1371/journal.pone.0183170.
[38]
Maissan IM, Dirven PJ, Haitsma IK, et al. Ultrasonographic measured optic nerve sheath diameter as an accurate and quick monitor for changes in intracranial pressure[J]. J Neurosurg, 2015, 123(3): 743-747. DOI: 10.3171/2014.10.JNS141197.
[39]
Swanson JW, Aleman TS, Xu W, et al. Evaluation of optical coherence tomography to detect elevated intracranial pressure in children[J]. JAMA Ophthalmol, 2017, 135(4): 320-328. DOI: 10.1001/jamaophthalmol.2017.0025.
[40]
Thomas R, Shin SS, Balu R. Applications of near-infrared spectroscopy in neurocritical care[J]. Neurophotonics, 2023, 10(2): 023522. DOI: 10.1117/1.NPh.10.2.023522.
[41]
Hvedstrup J, Radojicic A, Moudrous W, et al. Intracranial pressure: a comparison of the noninvasive headSense monitor versus lumbar pressure measurement[J]. World Neurosurg, 2018, 112: e576-e580. DOI: 10.1016/j.wneu.2018.01.089.
[42]
Carney N, Totten AM, O'reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition[J]. 2017, 80(1): 6-15. DOI: 10.1227/NEU.0000000000001432.
[43]
Bernard F, Barsan W, Diaz-Arrastia R, et al. Brain oxygen optimization in severe traumatic brain injury (BOOST-3): a multicentre, randomised, blinded-endpoint, comparative effectiveness study of brain tissue oxygen and intracranial pressure monitoring versus intracranial pressure alone[J]. BMJ Open, 2022, 12(3): e060188. DOI: 10.1136/bmjopen-2021-060188.
[44]
Chesnut R, Aguilera S, Buki A, et al. A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle international severe traumatic brain injury consensus conference (SIBICC)[J]. Intensive Care Med, 2020, 46(5): 919-929. DOI: 10.1007/s00134-019-05900-x.
[45]
Mathieu F, Khellaf A, Ku JC, et al. Continuous near-infrared spectroscopy monitoring in adult traumatic brain Injury: a systematic review[J]. J Neurosurg Anesthesiol, 2020, 32(4): 288-299. DOI: 10.1097/ANA.0000000000000620.
[46]
Lindblad C, Raj R, Zeiler FA, et al. Current state of high-fidelity multimodal monitoring in traumatic brain injury[J]. Acta Neurochir (Wien), 2022, 164(12): 3091-3100. DOI: 10.1007/s00701-022-05383-8.
[47]
Timofeev I, Carpenter KL, Nortje J, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients[J]. Brain, 2011, 134(Pt 2): 484-494. DOI: 10.1093/brain/awq353.
[48]
Carney N, Totten AM, O'reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition[J]. Neurosurgery, 2017, 80(1): 6-15. DOI: 10.1227/NEU.0000000000001432.
[49]
Rubinos C, Alkhachroum A, Der-Nigoghossian C, et al. Electroencephalogram monitoring in critical care[J]. Semin Neurol, 2020, 40(6): 675-680. DOI: 10.1055/s-0040-1719073.
[50]
Sandroni C, Skrifvars MB, Taccone FS. Brain monitoring after cardiac arrest[J]. Curr Opin Crit Care, 2023, 29(2): 68-74. DOI: 10.1097/MCC.0000000000001023.
[51]
Barkatullah AF, Leishangthem L, Moss HE. MRI findings as markers of idiopathic intracranial hypertension[J]. Curr Opin Neurol, 2021, 34(1): 75-83. DOI: 10.1097/WCO.0000000000000885.
[52]
Pappu S, Lerma J, Khraishi T. Brain CT to assess intracranial pressure in patients with traumatic brain injury[J]. J Neuroimaging, 2016, 26(1): 37-40. DOI: 10.1111/jon.12289.
[53]
Aiolfi A, Benjamin E, Khor D, et al. Brain trauma foundation guidelines for intracranial pressure monitoring: compliance and effect on outcome[J]. World J Surg, 2017, 41(6): 1543-1549. DOI: 10.1007/s00268-017-3898-6.
[54]
Menon DK, Ercole A. Critical care management of traumatic brain injury[J]. Handb Clin Neurol, 2017, 140: 239-274. DOI: 10.1016/B978-0-444-63600-3.00014-3.
[55]
Foreman B, Lissak I A, Kamireddi N, et al. Challenges and opportunities in multimodal monitoring and Data analytics in traumatic brain injury[J]. Curr Neurol Neurosci Rep, 2021, 21(3): 6. DOI: 10.1007/s11910-021-01098-y.
[56]
Raj R, Luostarinen T, Pursiainen E, et al. Machine learning-based dynamic mortality prediction after traumatic brain injury[J]. Sci Rep, 2019, 9(1): 17672. DOI: 10.1038/s41598-019-53889-6.
[1] 潘立, 谢理政, 程宏伟, 茆翔. 创伤性颅脑损伤后垂体功能减退[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 308-312.
[2] 王景景, 符锋, 李建伟, 任党利, 陈翀, 刘慧, 孙洪涛, 涂悦. 针刺对中型创伤性颅脑损伤后BDNF/TrkB信号通路的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 199-205.
[3] 贾素英, 李倩, 郭姗姗. 创伤性颅脑损伤后血小板功能障碍的研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 180-185.
[4] 何佳伟, 张良, 杨骐, 王占祥. 创伤性颅脑损伤后进展性出血性损伤的诊疗现状[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 175-179.
[5] 王召, 田进杰, 郭朝, 王蕾, 严红燕, 冯素娟, 张毅. 血浆PGK1早期检测对创伤性颅脑损伤患者病情严重程度及预后的预测价值[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 154-159.
[6] 张永明. 颈段脊髓电刺激治疗颅脑损伤后慢性意识障碍的进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 129-134.
[7] 李文臣, 李日, 韩霖, 张舒岩. 正中神经电刺激对创伤性颅脑损伤昏迷促醒作用的Meta分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 269-275.
[8] 张付意, 侯现增, 汪建军, 辛涛. 有创颅内压监测靶向管控在重型颅脑损伤患者围术期应用价值分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 298-301.
[9] 卢维新, 严贵忠, 任海军. 近红外光谱技术在创伤性颅脑损伤中的应用研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 311-314.
[10] 康德智. 创伤性颅脑损伤后颅外并发症的精准治疗策略[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 193-195.
[11] 崔文兴, 葛顺楠, 屈延. 创伤性颅脑损伤后继发血管内皮细胞损伤机制的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 183-187.
[12] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[13] 王煜泽, 高文文, 杨磊, 赵海康. 无创监测技术在脑水肿应用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 113-117.
[14] 陈晨, 徐宏, 李政, 韩杨云. 脑室内颅内压监测在重型颅脑损伤患者围术期的应用研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(03): 146-151.
[15] 李永凯, 吐尔洪·吐尔逊, 杨建中. 开颅术后患者大脑中动脉的经颅多普勒超声测量值与意识评分、血生化指标的相关性[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 221-226.
阅读次数
全文


摘要