[1] |
Mollayeva T, Mollayeva S, Colantonio A. Traumatic brain injury: sex, gender and intersecting vulnerabilities[J]. Nat Rev Neurol, 2018, 14(12): 711-722. DOI: 10.1038/s41582-018-0091-y.
|
[2] |
Kilov AM, Togher L, Power E. Reliability of a computer and Internet survey (computer user profile) used by adults with and without traumatic brain injury (TBI)[J]. Brain Inj, 2015, 29(11): 1273-1291. DOI: 10.3109/02699052.2015.1042052.
|
[3] |
|
[4] |
Chen JK, Tsai WT, Lin SZ, et al. Using radial pulse wave as hemodynamic measurements to quantify effects of acupuncture therapy for patients with traumatic brain injury and ischemia stroke[J]. J Tradit Complement Med, 2022, 12(6): 594-598. DOI: 10.1016/j.jtcme.2022.08.005.
|
[5] |
|
[6] |
|
[7] |
Chow R, Wessels JM, Foster WG. Brain-derived neurotrophic factor (BDNF) expression and function in the mammalian reproductive Tract[J]. Hum Reprod Update, 2020, 26(4): 545-564. DOI: 10.1093/humupd/dmaa008.
|
[8] |
Gustafsson D, Klang A, Thams S, et al. The role of BDNF in experimental and clinical traumatic brain injury[J]. Int J Mol Sci, 2021, 22(7): 3582. DOI: 10.3390/ijms22073582.
|
[9] |
|
[10] |
Cheah M, Andrews MR. Targeting cell surface receptors for axon regeneration in the central nervous system[J]. Neural Regen Res, 2016, 11(12): 1884-1887. DOI: 10.4103/1673-5374.197079.
|
[11] |
Li LX, Chu JH, Chen XW, et al. Selenium ameliorates mercuric chloride-induced brain damage through activating BDNF/TrKB/PI3K/AKT and inhibiting NF-κB signaling pathways[J]. J Inorg Biochem, 2022, 229: 111716. DOI: 10.1016/j.jinorgbio.2022.111716.
|
[12] |
Lu X, Liu H, Cai Z, et al. ERK1/2-dependent BDNF synthesis and signaling is required for the antidepressant effect of microglia stimulation[J]. Brain Behav Immun, 2022, 106: 147-160. DOI: 10.1016/j.bbi.2022.08.005.
|
[13] |
|
[14] |
|
[15] |
Iughetti L, Lucaccioni L, Fugetto F, et al. Brain-derived neurotrophic factor and epilepsy: a systematic review[J]. Neuropeptides, 2018, 72: 23-29. DOI: 10.1016/j.npep.2018.09.005.
|
[16] |
Lin TW, Harward SC, Huang YZ, et al. Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy[J]. Neuropharmacology, 2020, 167: 107734. DOI: 10.1016/j.neuropharm.2019.107734.
|
[17] |
Chen X, Li Y, Kline AE, et al. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury[J]. Neuroscience, 2005, 135(1): 11-7. DOI: 10.1016/j.neuroscience.2005.05.041.
|
[18] |
Feliciano DP, Sahbaie P, Shi X, et al. Nociceptive sensitization and BDNF up-regulation in a rat model of traumatic brain injury[J]. Neurosci Lett, 2014, 583: 55-59. DOI: 10.1016/j.neulet.2014.09.030.
|
[19] |
Liang XB, Liu XY, Li FQ, et al. Long-term high-frequency electro-acupuncture stimulation prevents neuronal degeneration and upregulates BDNF mRNA in the substantia nigra and ventral tegmental area following medial forebrain bundle axotomy[J]. Brain Res Mol Brain Res, 2002, 108(1-2): 51-9. DOI: 10.1016/s0169-328x(02)00513-2.
|
[20] |
Wong YH, Lee CM, Xie W, et al. Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin[J]. Proc Natl Acad Sci USA, 2015, 112(32): E4475-E4484. DOI: 10.1073/pnas.1511830112.
|
[21] |
Jin W. Regulation of BDNF-TrkB signaling and potential therapeutic strategies for Parkinson's disease[J]. J Clin Med, 2020, 9(1): 257. DOI: 10.3390/jcm9010257.
|
[22] |
Guo W, Nagappan G, Lu B. Differential effects of transient and sustained activation of BDNF-TrkB signaling[J]. Dev Neurobiol, 2018, 78(7): 647-659. DOI: 10.1002/dneu.22592.
|
[23] |
Criscuolo C, Fabiani C, Cerri E, et al. Synaptic dysfunction in Alzheimer's disease and glaucoma: from common degenerative mechanisms toward neuroprotection[J]. Front Cell Neurosci, 2017, 11: 53. DOI: 10.3389/fncel.2017.00053.
|