切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (02) : 117 -120. doi: 10.3877/cma.j.issn.2095-9141.2022.02.011

综述

脑成像技术在意识障碍患者脑功能评估中的应用
魏微1, 何江弘2,(), 黄勇华1, 司娟宁3   
  1. 1. 100700 北京,解放军总医院第七医学中心神经内科
    2. 100700 北京,解放军总医院第七医学中心神经外科
    3. 100085 北京,北京信息科技大学
  • 收稿日期:2021-02-05 出版日期:2022-04-15
  • 通信作者: 何江弘
  • 基金资助:
    国家自然科学基金(817711128)

Application of neuroimaging technologies in assessment of brain function for patients with disorders of consciousness

Wei Wei1, Jianghong He2,(), Yonghua Huang1, Juanning Si3   

  1. 1. Department of Neurology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China
    2. Department of Neurosurgery, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China
    3. Beijing University of Information Technology, Beijing 100085, China
  • Received:2021-02-05 Published:2022-04-15
  • Corresponding author: Jianghong He
引用本文:

魏微, 何江弘, 黄勇华, 司娟宁. 脑成像技术在意识障碍患者脑功能评估中的应用[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 117-120.

Wei Wei, Jianghong He, Yonghua Huang, Juanning Si. Application of neuroimaging technologies in assessment of brain function for patients with disorders of consciousness[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(02): 117-120.

意识障碍(DOC)患者残余脑功能的准确评估对患者后续治疗方案的确定、预后评估等医疗决策具有重要意义。近年来,随着脑科学的发展,以正电子发射型计算机断层成像、功能磁共振成像、功能近红外光谱技术、脑电等为代表的脑成像技术,极大地推动了DOC患者意识水平的检测和评估。本文主要对DOC患者的脑功能检测评估技术进行综述。

Accurate assessment of residual brain function in patients with disorders of consciousness (DOC) is of great importance for the diagnosis, therapeutic treatment, and prognosis for them. In recent years, with the development of brain science, the neuroimaging technologies represented by positron emission computed tomography, functional magnetic resonance imaging, functional near-infrared spectroscopy, and electroencephalography have greatly promoted the detection and evaluation of the brain functional activity of the patients with DOC. This paper reviews the brain function assessment techniques for the patients with DOC.

[34]
Kempny AM, James L, Yelden K, et al. Functional near infrared spectroscopy as a probe of brain function in people with prolonged disorders of consciousness[J]. Neuroimage Clin, 2016, 12: 312-319.
[35]
Abdalmalak A, Milej D, Norton L, et al. Single-session communication with a locked-in patient by functional near-infrared spectroscopy[J]. Neurophotonics, 2017, 4(4): 040501.
[36]
Chaudhary U, Xia B, Silvoni S, et al. Brain-computer interface-based communication in the completely locked-in state[J]. PLoS Biol, 2017, 15(1): e1002593.
[37]
Zhang Y, Yang Y, Si J, et al. Influence of inter-stimulus interval of spinal cord stimulation in patients with disorders of consciousness: a preliminary functional near-infrared spectroscopy study[J]. Neuroimage Clin, 2017, 17: 1-9.
[38]
Si J, Dang Y, Zhang Y, et al. Spinal cord stimulation frequency influences the hemodynamic response in patients with disorders of consciousness[J]. Neurosci Bull, 2018, 34(4): 659-667.
[39]
Chennu S, Annen J, Wannez S, et al. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness[J]. Brain, 2017, 140(8): 2120-2132.
[40]
Kotchoubey B. Evoked and event-related potentials in disorders of consciousness: a quantitative review[J]. Conscious Cogn, 2017, 54: 155-167.
[41]
Arnaldi D, Terzaghi M, Cremascoli R, et al. The prognostic value of sleep patterns in disorders of consciousness in the sub-acute phase[J]. Clin Neurophysiol, 2016, 127(2): 1445-1451.
[42]
Bai Y, Xia X, Li X. A review of resting-state electroencephalography analysis in disorders of consciousness[J]. Front Neurol, 2017, 8: 471.
[43]
Urakami Y. Relationship between, sleep spindles and clinical recovery in patients with traumatic brain injury: a simultaneous EEG and MEG study[J]. Clin EEG Neurosci, 2012, 43(1): 39-47.
[44]
Piarulli A, Bergamasco M, Thibaut A, et al. EEG ultradian rhythmicity differences in disorders of consciousness during wakefulness[J]. J Neurol, 2016, 263(9): 1746-1760.
[45]
Leon-Carrion J, Leon-Dominguez U, Pollonini L, et al. Synchronization between the anterior and posterior cortex determines consciousness level in patients with traumatic brain injury (TBI)[J]. Brain Res, 2012, 1476: 22-30.
[46]
Golkowski D, Merz K, Mlynarcik C, et al. Simultaneous EEG-PET-fMRI measurements in disorders of consciousness: an exploratory study on diagnosis and prognosis[J]. J Neurol, 2017, 264(9): 1986-1995.
[47]
Harrison AH, Connolly JF. Finding a way in: a review and practical evaluation of fMRI and EEG for detection and assessment in disorders of consciousness[J]. Neurosci Biobehav Rev, 2013, 37(8): 1403-1419.
[1]
Giacino JT, Katz DI, Schiff ND, et al. Practice guideline update recommendations summary: disorders of consciousness: report of the guideline development, dissemination, and implementation subcommittee of the American academy of neurology; the American congress of rehabilitation medicine; and the national institute on disability, independent living, and rehabilitation research[J]. Neurology, 2018, 91(10): 450-460.
[2]
Laureys S, Schiff ND. Coma and consciousness: paradigms (re)framed by neuroimaging[J]. Neuroimage, 2012, 61(2): 478-491.
[3]
何江弘.慢性意识障碍的体系构建[J].中华脑科疾病与康复杂志(电子版), 2018, 8(1): 58-60.
[4]
Thibaut A, Schiff N, Giacino J, et al. Therapeutic interventions in patients with prolonged disorders of consciousness[J]. Lancet Neurol, 2019, 18(6): 600-614.
[5]
赵继宗.意识障碍临床诊疗的现状与进展[J].临床神经外科杂志, 2020, 17(1): 1-3, 7.
[6]
Poo MM, Du JL, Ip NY, et al. China brain project: basic neuroscience, brain diseases, and brain-inspired computing[J]. Neuron, 2016, 92(3): 591-596.
[7]
Kondziella D, Bender A, Diserens K, et al. European academy of neurology guideline on the diagnosis of coma and other disorders of consciousness[J]. Eur J Neurol, 2020, 27(5): 741-756.
[8]
Jennett B, Plum F. Persistent vegetative state after brain damage. A syndrome in search of a name[J]. Lancet, 1972, 1(7753): 734-737.
[9]
Monti MM, Laureys S, Owen AM. The vegetative state[J]. BMJ, 2010, 341: c3765.
[10]
Giacino JT, Ashwal S, Childs N, et al. The minimally conscious state: definition and diagnostic criteria[J]. Neurology, 2002, 58(3): 349-53.
[11]
Bruno MA, Vanhaudenhuyse A, Thibaut A, et al. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness[J]. J Neurol, 2011, 258(7): 1373-84.
[12]
Giacino JT, Fins JJ, Laureys S, et al. Disorders of consciousness after acquired brain injury: the state of the science[J]. Nat Rev Neurol, 2014, 10(2): 99-114.
[13]
Fernández-Espejo D, Owen AM. Detecting awareness after severe brain injury[J]. Nat Rev Neurosci, 2013, 14(11): 801-809.
[14]
Jox RJ, Bernat JL, Laureys S, et al. Disorders of consciousness: responding to requests for novel diagnostic and therapeutic interventions[J]. Lancet Neurol, 2012, 11(8): 732-738.
[15]
Curley WH, Forgacs PB, Voss HU, et al. Characterization of EEG signals revealing covert cognition in the injured brain[J]. Brain, 2018, 141(5): 1404-1421.
[16]
Bodart O, Gosseries O, Wannez S, et al. Measures of metabolism and complexity in the brain of patients with disorders of consciousness[J]. Neuroimage Clin, 2017, 14: 354-362.
[17]
Stender J, Kupers R, Rodell A, et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients[J]. J Cereb Blood Flow Metab, 2015, 35(1): 58-65.
[18]
Laureys S. The neural correlate of (un)awareness: lessons from the vegetative state[J]. Trends Cogn Sci, 2005, 9(12): 556-559.
[19]
Stender J, Gosseries O, Bruno MA, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study[J]. Lancet, 2014, 384(9942): 514-522.
[20]
Phillips CL, Bruno MA, Maquet P, et al. "Relevance vector machine" consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients[J]. Neuroimage, 2011, 56(2): 797-808.
[21]
Bruno MA, Vanhaudenhuyse A, Schnakers C, et al. Visual fixation in the vegetative state: an observational case series PET study[J]. BMC Neurol, 2010, 10: 35.
[22]
Demertzi A, Antonopoulos G, Heine L, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients[J]. Brain, 2015, 138(Pt 9): 2619-2631.
[23]
Di Perri C, Stender J, Laureys S, et al. Functional neuroanatomy of disorders of consciousness[J]. Epilepsy Behav, 2014, 30: 28-32.
[24]
Monti MM, Vanhaudenhuyse A, Coleman MR, et al. Willful modulation of brain activity in disorders of consciousness[J]. N Engl J Med, 2010, 362(7): 579-589.
[25]
Owen AM. The search for consciousness[J]. Neuron, 2019, 102(3): 526-528.
[26]
Bodien YG, Giacino JT, Edlow BL. Functional MRI motor imagery tasks to detect command following in traumatic disorders of consciousness[J]. Front Neurol, 2017, 8: 688.
[27]
Demertzi A, Soddu A, Laureys S. Consciousness supporting networks[J]. Curr Opin Neurobiol, 2013, 23(2): 239-244.
[28]
Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients[J]. Brain, 2010, 133(Pt 1): 161-171.
[29]
Soddu A, Vanhaudenhuyse A, Bahri MA, et al. Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness[J]. Hum Brain Mapp, 2012, 33(4): 778-796.
[30]
Yücel MA, Selb JJ, Huppert TJ, et al. Functionalnear infrared spectroscopy: enabling routine functional brain imaging[J]. Curr Opin Biomed Eng, 2017, 4: 78-86.
[31]
Pinti P, Tachtsidis I, Hamilton A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Ann N Y Acad Sci, 2020, 1464(1): 5-29.
[32]
Rupawala M, Dehghani H, Lucas SJE, et al. Shining a Light on awareness: a review of functional near-infrared spectroscopy for prolonged disorders of consciousness[J]. Front Neurol, 2018, 9: 350.
[33]
Molteni E, Arrigoni F, Bardoni A, et al. Bedside assessment of residual functional activation in minimally conscious state using NIRS and general linear models[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2013, 2013: 3551-3554.
[1] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[2] 牟小娟, 赵敏, 张海霞, 杨津, 贾琳. 18F-FDG显像剂不同准备方法对PET/CT功能成像运用的临床研究[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 454-456.
[3] 冀京雷, 李秀丽, 贾亚男, 冯会敏, 刘丽艳. 改良aEEG评分评估高危足月低体质量新生儿脑损伤的效果分析[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 165-169.
[4] 张永明. 颈段脊髓电刺激治疗颅脑损伤后慢性意识障碍的进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 129-134.
[5] 李青华, 靳晨彦, 王艳军, 庄禹童, 何江弘, 郭文治. 七氟醚与丙泊酚对慢性意识障碍患者全身麻醉期间脑电的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 12-18.
[6] 党圆圆, 杨艺, 夏小雨, 王勇, 陈雪玲, 何江弘. 脑深部电刺激治疗脑干出血后意识障碍一例报道[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 188-189.
[7] 吴新高, 李伟, 马俊, 刘红, 黄平. 癫痫患者定量脑电图功率谱相关参数与认知功能损伤的相关性研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 304-308.
[8] 杨新宇, 彭建文, 李辉萍, 陶希, 方翠霓, 宋涛. 脑电非线性分析在卒中后意识障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 185-190.
[9] 梁玉兰, 陈亮, 曾令梅. NLR、RDW水平联合振幅整合脑电图在缺氧缺血性脑病患儿的预后研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 84-89.
[10] 丁浩然, 关宇光, 王雄飞, 赵萌, 王静, 王梦阳, 滕鹏飞, 栾国明. 立体定向脑电图引导下多电极立体适形射频热凝毁损治疗药物难治性岛叶癫痫的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 227-233.
[11] 沈伶俐, 刘晓鸣, 李玮玮, 夏露, 周强. 自身免疫性脑炎患儿视频脑电图监测期间基于共享信息系统的协同干预模式的作用分析[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(03): 162-166.
[12] 张书芬, 柴丽萍, 李勃, 巩庆雷, 王青磊, 陈春莲. 产后精神病患者大脑分数低频振幅的静息态fMRI研究[J]. 中华消化病与影像杂志(电子版), 2022, 12(03): 142-145.
[13] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[14] 王增成, 葛敏, 赵惠君, 袁学伟, 王丽琴. 监测窒息新生儿血清BDNF、S100B及aEEG动态变化及对脑损伤预测价值[J]. 中华临床医师杂志(电子版), 2022, 16(01): 48-53.
[15] 代雪宁, 孟润祺, 左汉恒, 宋秉春, 张金国. 非典型心尖肥厚型心肌病的诊断学特征[J]. 中华诊断学电子杂志, 2022, 10(04): 243-247.
阅读次数
全文


摘要