[1] |
Li M, Li S, Du C, et al. Exosomes from different cells: Characteristics, modifications, and therapeutic applications[J]. Eur J Med Chem, 2020, 207: 112784.
|
[2] |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
|
[3] |
Qing L, Chen H, Tang J, et al. Exosomes and their microRNA cargo: new players in peripheral nerve regeneration[J]. Neurorehabil Neural Repair, 2018, 32(9): 765-776.
|
[4] |
Tucci M, Mannavola F, Passarelli A, et al. Exosomes in melanoma: a role in tumor progression, metastasis and impaired immune system activity[J]. Oncotarget, 2018, 9(29): 20826-20837.
|
[5] |
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition,purpose,and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7): 727.
|
[6] |
Yeon JH, Jeong HE, Seo H, et al. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts[J]. Acta Biomater, 2018, 76: 146-153.
|
[7] |
李超然,黄桂林,王帅. 间充质干细胞来源外泌体促进损伤组织修复与再生的应用与进展[J]. 中国组织工程研究, 2018, 22(1): 133-139.
|
[8] |
张静. 干细胞外泌体生物学功能及临床应用前景[J]. 中国美容医学, 2017, 26(4): 136-140.
|
[9] |
蒋欢,刘尧,陈旭. 间充质干细胞外泌体应用于组织再生的研究进展[J]. 中国医科大学学报, 2018, 47(1): 73-77.
|
[10] |
王超. 外泌体在脑胶质瘤诊断与治疗的研究进展[J]. 中国微侵袭神经外科杂志, 2017, 22(2): 94-96.
|
[11] |
解东成,陈红伟,王圣杰, 等. 创伤性脑损伤后不同程度脑积水患者脑室-腹腔分流术临床疗效分析[J]. 中华神经创伤外科电子杂志, 2021, 7(2): 92-95.
|
[12] |
Huang S, Ge X, Yu J, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons[J]. FASEB J, 2018, 32(1): 512-528.
|
[13] |
Ge X, Guo M, Hu T, et al. Increased microglial exosomal miR-124-3p alleviates neurodegeneration and improves cognitive outcome after rmTBI[J]. Mol Ther, 2020, 28(2): 503-522.
|
[14] |
Li D, Huang S, Zhu J, et al. Exosomes from MiR-21-5p-increased neurons play a role in neuroprotection by suppressing Rab11a-mediated neuronal autophagy in vitro after traumatic brain injury[J]. Med Sci Monit, 2019, 25: 1871-1885.
|
[15] |
Ge X, Han Z, Chen F, et al. MiR-21 alleviates secondary blood-brain barrier damage after traumatic brain injury in rats[J]. Brain Res, 2015, 1603: 150-157.
|
[16] |
Yin Z, Han Z, Hu T, et al. Neuron-derived exosomes with high miR-21-5p expression promoted polarization of M1 microglia in culture[J]. Brain Behav Immun, 2020, 83: 270-282.
|
[17] |
Ye Z, Hu J, Xu H, et al. Serum exosomal microRNA-27-3p aggravates cerebral injury and inflammation in patients with acute cerebral infarction by targeting PPARγ[J]. Inflammation, 2021, 44(3): 1035-1048.
|
[18] |
Jia J, Cui Y, Tan Z, et al. MicroRNA-579-3p exerts neuroprotective effects against ischemic stroke via anti-inflammation and anti-apoptosis[J]. Neuropsychiatr Dis Treat, 2020, 16: 1229-1238.
|
[19] |
Shen H, Yao X, Li H, et al. Role of exosomes derived from miR-133b modified MSCs in an experimental rat model of intracerebral hemorrhage[J]. J Mol Neurosci, 2018, 64(3): 421-430.
|
[20] |
Otero-Ortega L, Gómez de Frutos MC, Laso-García F, et al. Exosomes promote restoration after an experimental animal model of intracerebral hemorrhage[J]. J Cereb Blood Flow Metab, 2018, 38(5): 767-779.
|
[21] |
黄可群,刘琳,崔巍, 等. MicroRNA调控认知功能的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(1): 53-56.
|
[22] |
朱小青. Aβ和tau蛋白在AD发病机制中的作用[J]. 中国病理生理杂志, 2011, 4: 694.
|
[23] |
Polanco JC, Li C, Durisic N, et al. Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons[J]. Acta Neuropathol Commun, 2018, 6(1): 10.
|
[24] |
Rajendran L, Honsho M, Zahn TR, et al. Alzheimer's disease beta-amyloid peptides are released in association with exosomes[J]. Proc Natl Acad Sci U S A, 2006, 103(30): 11172-11177.
|
[25] |
Alvarez-Erviti L, Seow Y, Schapira AH, et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission[J]. Neurobiol Dis, 2011, 42(3): 360-367.
|
[26] |
Iranifar E, Seresht BM, Momeni F, et al. Exosomes and microRNAs: new potential therapeutic candidates in alzheimer disease therapy[J]. J Cell Physiol, 2019, 234(3): 2296-2305.
|
[27] |
Lees AJ, Hardy J, Revesz T. Parkinson's disease[J]. Lancet, 2009, 373(9680): 2055-2066.
|
[28] |
Harischandra DS, Ghaisas S, Rokad D, et al. Environmental neurotoxicant manganese regulates exosome-mediated extracellular miRNAs in cell culture model of Parkinson's disease: relevance to α-synuclein misfolding in metal neurotoxicity[J]. Neurotoxicology, 2018, 64: 267-277.
|
[29] |
Bai X, Tang Y, Yu M, et al. Downregulation of blood serum microRNA 29 family in patients with Parkinson's disease[J]. Sci Rep, 2017, 7(1): 5411.
|
[30] |
Ravanidis S, Bougea A, Papagiannakis N, et al. Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients[J]. Ann Clin Transl Neurol, 2020, 7(9): 1594-1607.
|
[31] |
Landles C, Bates GP. Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular medicine review series[J]. EMBO Rep, 2004, 5(10): 958-963.
|
[32] |
Reed ER, Latourelle JC, Bockholt JH, et al. MicroRNAs in CSF as prodromal biomarkers for Huntington disease in the PREDICT-HD study[J]. Neurology, 2018, 90: e264-e272.
|
[33] |
Lee ST, Im W, Ban JJ, et al. Exosome-based delivery of miR-124 in a Huntington's disease model[J]. J Mov Disord, 2017, 10(1): 45-52.
|
[34] |
Dong XY, Cong SY. Bioinformatic analysis of microRNA expression in Huntington's disease[J]. Mol Med Rep, 2018, 18(3): 2857-2865.
|
[35] |
Lee ST, Chu K, Im WS, et al. Altered microRNA regulation in Huntington's disease models[J]. Exp Neurol, 2011, 227(1): 172-179.
|
[36] |
Sinha M, Mukhopadhyay S, Bhattacharyya NP. Mechanism(s) of alteration of micro RNA expressions in Huntington's disease and their possible contributions to the observed cellular and molecular dysfunctions in the disease[J]. Neuromolecular Med, 2012, 14(4): 221-243.
|
[37] |
Chazot-Balcon M, Dumazeaud M, Bouchard JP. Neuropsychopathology of amyotrophic lateral sclerosis[J]. Rev Infirm, 2019, 68: 36-38.
|
[38] |
Chen Y, Xia K, Chen L, et al. Increased interleukin-6 levels in the astrocyte-derived exosomes of sporadic amyotrophic lateral sclerosis patients[J]. Front Neurosci, 2019, 13: 574.
|
[39] |
Marcuzzo S, Bonanno S, Kapetis D, et al. Up-regulation of neural and cell cycle-related microRNAs in brain of amyotrophic lateral sclerosis mice at late disease stage[J]. Mol Brain, 2015, 8: 5.
|
[40] |
Saucier D, Wajnberg G, Roy J, et al. Identification of a circulating miRNA signature in extracellular vesicles collected from amyotrophic lateral sclerosis patients[J]. Brain Res, 2019, 1708: 100-108.
|
[41] |
Xu Q, Zhao Y, Zhou X, et al. Comparison of the extraction and determination of serum exosome and miRNA in serum and the detection of miR-27a-3p in serum exosome of ALS patients[J]. Intractable Rare Dis Res, 2018, 7(1): 13-18.
|