切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (05) : 307 -310. doi: 10.3877/cma.j.issn.2095-9141.2022.05.010

综述

外泌体及其miRNAs在常见神经损伤疾病中诊断和治疗作用的研究进展
高雅浩1, 韩光魁2, 姜迪3, 崔昌萌2,()   
  1. 1. 272067 济宁,济宁医学院临床医学院
    2. 272029 济宁,济宁医学院附属医院神经外科
    3. 250012 济南,山东大学齐鲁医学院
  • 收稿日期:2021-10-26 出版日期:2022-10-15
  • 通信作者: 崔昌萌
  • 基金资助:
    国家自然科学基金(81901954)

Diagnosis and treatment of exosomes and their miRNAs in the common nerve injury diseases

Yahao Gao1, Guangkui Han2, Di Jiang3, Changmeng Cui2,()   

  1. 1. Jining Medical College of Clinical Medicine, Jining 272067, China
    2. Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining 272029, China
    3. Cheeloo College of Medicine, Shandong University, Jinan 250012, China
  • Received:2021-10-26 Published:2022-10-15
  • Corresponding author: Changmeng Cui
引用本文:

高雅浩, 韩光魁, 姜迪, 崔昌萌. 外泌体及其miRNAs在常见神经损伤疾病中诊断和治疗作用的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2022, 08(05): 307-310.

Yahao Gao, Guangkui Han, Di Jiang, Changmeng Cui. Diagnosis and treatment of exosomes and their miRNAs in the common nerve injury diseases[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(05): 307-310.

外泌体中的多种核酸和蛋白质等生物活性物质可充当信息分子,进行细胞间的信息交流和信息传递,从而调控疾病的发生发展过程。其中外泌体携带的miRNAs能通过血脑屏障发挥作用,具有高稳定性和高敏感性的特点,并且在调控神经发育和神经再生等生理和病理过程中都发挥着重要作用,因此可作为疾病诊断、预后甚至损伤情况的生物标志物,并且其对某些疾病也有一定的治疗作用。鉴于外泌体miRNAs参与了神经系统中大多数疾病的发生发展过程,本文将对外泌体及其miRNAs在常见神经损伤疾病中的诊断和治疗作用进行综述。

Bioactive substances such as nucleic acids and proteins in exosomes can act as information molecules, communicate and transmit information among cells, and thus regulate the occurrence and development of diseases. The miRNAs carried by exosomes can play a role through the blood-brain barrier, which has the characteristics of high stability and high sensitivity, and plays an important role in regulating physiological and pathological processes such as nerve development and nerve regeneration, so it can be used as a biomarker for disease diagnosis, prognosis and even injury, and has a certain therapeutic effect on some diseases. In view of the fact that exosomes miRNAs are involved in the occurrence and development of most diseases in the nervous system, this article reviews the diagnostic and therapeutic role of exosomes and their miRNAs in the common nerve injury diseases.

[1]
Li M, Li S, Du C, et al. Exosomes from different cells: Characteristics, modifications, and therapeutic applications[J]. Eur J Med Chem, 2020, 207: 112784.
[2]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
[3]
Qing L, Chen H, Tang J, et al. Exosomes and their microRNA cargo: new players in peripheral nerve regeneration[J]. Neurorehabil Neural Repair, 2018, 32(9): 765-776.
[4]
Tucci M, Mannavola F, Passarelli A, et al. Exosomes in melanoma: a role in tumor progression, metastasis and impaired immune system activity[J]. Oncotarget, 2018, 9(29): 20826-20837.
[5]
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition,purpose,and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7): 727.
[6]
Yeon JH, Jeong HE, Seo H, et al. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts[J]. Acta Biomater, 2018, 76: 146-153.
[7]
李超然,黄桂林,王帅. 间充质干细胞来源外泌体促进损伤组织修复与再生的应用与进展[J]. 中国组织工程研究, 2018, 22(1): 133-139.
[8]
张静. 干细胞外泌体生物学功能及临床应用前景[J]. 中国美容医学, 2017, 26(4): 136-140.
[9]
蒋欢,刘尧,陈旭. 间充质干细胞外泌体应用于组织再生的研究进展[J]. 中国医科大学学报, 2018, 47(1): 73-77.
[10]
王超. 外泌体在脑胶质瘤诊断与治疗的研究进展[J]. 中国微侵袭神经外科杂志, 2017, 22(2): 94-96.
[11]
解东成,陈红伟,王圣杰, 等. 创伤性脑损伤后不同程度脑积水患者脑室-腹腔分流术临床疗效分析[J]. 中华神经创伤外科电子杂志, 2021, 7(2): 92-95.
[12]
Huang S, Ge X, Yu J, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons[J]. FASEB J, 2018, 32(1): 512-528.
[13]
Ge X, Guo M, Hu T, et al. Increased microglial exosomal miR-124-3p alleviates neurodegeneration and improves cognitive outcome after rmTBI[J]. Mol Ther, 2020, 28(2): 503-522.
[14]
Li D, Huang S, Zhu J, et al. Exosomes from MiR-21-5p-increased neurons play a role in neuroprotection by suppressing Rab11a-mediated neuronal autophagy in vitro after traumatic brain injury[J]. Med Sci Monit, 2019, 25: 1871-1885.
[15]
Ge X, Han Z, Chen F, et al. MiR-21 alleviates secondary blood-brain barrier damage after traumatic brain injury in rats[J]. Brain Res, 2015, 1603: 150-157.
[16]
Yin Z, Han Z, Hu T, et al. Neuron-derived exosomes with high miR-21-5p expression promoted polarization of M1 microglia in culture[J]. Brain Behav Immun, 2020, 83: 270-282.
[17]
Ye Z, Hu J, Xu H, et al. Serum exosomal microRNA-27-3p aggravates cerebral injury and inflammation in patients with acute cerebral infarction by targeting PPARγ[J]. Inflammation, 2021, 44(3): 1035-1048.
[18]
Jia J, Cui Y, Tan Z, et al. MicroRNA-579-3p exerts neuroprotective effects against ischemic stroke via anti-inflammation and anti-apoptosis[J]. Neuropsychiatr Dis Treat, 2020, 16: 1229-1238.
[19]
Shen H, Yao X, Li H, et al. Role of exosomes derived from miR-133b modified MSCs in an experimental rat model of intracerebral hemorrhage[J]. J Mol Neurosci, 2018, 64(3): 421-430.
[20]
Otero-Ortega L, Gómez de Frutos MC, Laso-García F, et al. Exosomes promote restoration after an experimental animal model of intracerebral hemorrhage[J]. J Cereb Blood Flow Metab, 2018, 38(5): 767-779.
[21]
黄可群,刘琳,崔巍, 等. MicroRNA调控认知功能的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(1): 53-56.
[22]
朱小青. Aβ和tau蛋白在AD发病机制中的作用[J]. 中国病理生理杂志, 2011, 4: 694.
[23]
Polanco JC, Li C, Durisic N, et al. Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons[J]. Acta Neuropathol Commun, 2018, 6(1): 10.
[24]
Rajendran L, Honsho M, Zahn TR, et al. Alzheimer's disease beta-amyloid peptides are released in association with exosomes[J]. Proc Natl Acad Sci U S A, 2006, 103(30): 11172-11177.
[25]
Alvarez-Erviti L, Seow Y, Schapira AH, et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission[J]. Neurobiol Dis, 2011, 42(3): 360-367.
[26]
Iranifar E, Seresht BM, Momeni F, et al. Exosomes and microRNAs: new potential therapeutic candidates in alzheimer disease therapy[J]. J Cell Physiol, 2019, 234(3): 2296-2305.
[27]
Lees AJ, Hardy J, Revesz T. Parkinson's disease[J]. Lancet, 2009, 373(9680): 2055-2066.
[28]
Harischandra DS, Ghaisas S, Rokad D, et al. Environmental neurotoxicant manganese regulates exosome-mediated extracellular miRNAs in cell culture model of Parkinson's disease: relevance to α-synuclein misfolding in metal neurotoxicity[J]. Neurotoxicology, 2018, 64: 267-277.
[29]
Bai X, Tang Y, Yu M, et al. Downregulation of blood serum microRNA 29 family in patients with Parkinson's disease[J]. Sci Rep, 2017, 7(1): 5411.
[30]
Ravanidis S, Bougea A, Papagiannakis N, et al. Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients[J]. Ann Clin Transl Neurol, 2020, 7(9): 1594-1607.
[31]
Landles C, Bates GP. Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular medicine review series[J]. EMBO Rep, 2004, 5(10): 958-963.
[32]
Reed ER, Latourelle JC, Bockholt JH, et al. MicroRNAs in CSF as prodromal biomarkers for Huntington disease in the PREDICT-HD study[J]. Neurology, 2018, 90: e264-e272.
[33]
Lee ST, Im W, Ban JJ, et al. Exosome-based delivery of miR-124 in a Huntington's disease model[J]. J Mov Disord, 2017, 10(1): 45-52.
[34]
Dong XY, Cong SY. Bioinformatic analysis of microRNA expression in Huntington's disease[J]. Mol Med Rep, 2018, 18(3): 2857-2865.
[35]
Lee ST, Chu K, Im WS, et al. Altered microRNA regulation in Huntington's disease models[J]. Exp Neurol, 2011, 227(1): 172-179.
[36]
Sinha M, Mukhopadhyay S, Bhattacharyya NP. Mechanism(s) of alteration of micro RNA expressions in Huntington's disease and their possible contributions to the observed cellular and molecular dysfunctions in the disease[J]. Neuromolecular Med, 2012, 14(4): 221-243.
[37]
Chazot-Balcon M, Dumazeaud M, Bouchard JP. Neuropsychopathology of amyotrophic lateral sclerosis[J]. Rev Infirm, 2019, 68: 36-38.
[38]
Chen Y, Xia K, Chen L, et al. Increased interleukin-6 levels in the astrocyte-derived exosomes of sporadic amyotrophic lateral sclerosis patients[J]. Front Neurosci, 2019, 13: 574.
[39]
Marcuzzo S, Bonanno S, Kapetis D, et al. Up-regulation of neural and cell cycle-related microRNAs in brain of amyotrophic lateral sclerosis mice at late disease stage[J]. Mol Brain, 2015, 8: 5.
[40]
Saucier D, Wajnberg G, Roy J, et al. Identification of a circulating miRNA signature in extracellular vesicles collected from amyotrophic lateral sclerosis patients[J]. Brain Res, 2019, 1708: 100-108.
[41]
Xu Q, Zhao Y, Zhou X, et al. Comparison of the extraction and determination of serum exosome and miRNA in serum and the detection of miR-27a-3p in serum exosome of ALS patients[J]. Intractable Rare Dis Res, 2018, 7(1): 13-18.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[6] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[7] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[8] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[9] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[10] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[11] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[12] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[13] 薛文, 刘卓, 贾卫华, 张小义, 刘进, 王爱国, 冯志刚, 杨鑫, 田祺, 段虎斌. 大鼠脊髓损伤后降钙素基因相关肽及神经元钙超载的变化及相关性分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 198-205.
[14] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[15] 张津, 李欣达, 徐如祥. 神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 257-263.
阅读次数
全文


摘要