切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2021, Vol. 07 ›› Issue (05) : 266 -270. doi: 10.3877/cma.j.issn.2095-9141.2021.05.003

临床研究

NLR与PLR及联合指标预测创伤性颅脑损伤预后的临床价值及预后模型的构建
陈昊阳1, 冯雷2,()   
  1. 1. 471000 洛阳,河南科技大学第一附属医院重症医学科
    2. 272000 济宁市第一人民医院神经外科
  • 收稿日期:2020-11-20 出版日期:2021-10-15
  • 通信作者: 冯雷

Clinical value of NLR, PLR and their combined indicators in predicting the prognosis of traumatic brain injury and the construction of prognostic model

Haoyang Chen1, Lei Feng2,()   

  1. 1. Department of Critical Medicine, The First Affiliated Hospital of He’nan University of Science and Technology, Luoyang 471000, China
    2. Department of Neurosurgery, Jining First People’s Hospital, Jining 272000, China
  • Received:2020-11-20 Published:2021-10-15
  • Corresponding author: Lei Feng
引用本文:

陈昊阳, 冯雷. NLR与PLR及联合指标预测创伤性颅脑损伤预后的临床价值及预后模型的构建[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 266-270.

Haoyang Chen, Lei Feng. Clinical value of NLR, PLR and their combined indicators in predicting the prognosis of traumatic brain injury and the construction of prognostic model[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2021, 07(05): 266-270.

目的

研究创伤性颅脑损伤(TBI)患者生化及炎症指标的变化,探讨外周血中性粒细胞-淋巴细胞比值(NLR)和血小板-淋巴细胞比值(PLR)对患者预后的预测价值。

方法

回顾性分析济宁市第一人民医院神经外科自2019年1月至2020年1月收治的132例TBI患者的一般资料。根据患者伤后6个月的GOS评分分为预后良好组(91例)和预后不良组(41例)。比较2组患者的NLR和PLR,采用多因素Logistic回归分析影响TBI预后不良的独立危险因素,并构建预后模型,运用受试者工作特征曲线(ROC)分析NLR和PLR单独、联合指标以及各组预后模型对患者预后的预测价值。

结果

2组患者的NLR、PLR比较差异均有统计学意义(P<0.05)。多因素Logistic回归分析显示年龄、入院GCS评分、NLR以及PLR是TBI患者伤后6个月预后不良的独立危险因素(P<0.05)。根据本研究所得的独立危险因素构建患者预后模型,模型1:年龄+GCS评分;模型2:年龄+GCS评分+NLR;模型3:年龄+GCS评分+PLR;模型4:年龄+GCS评分+NLR+PLR。ROC曲线分析后显示各模型的曲线下面积(AUC)分别为:0.685、0.822、0.671、0.864。其中模型4的AUC最大,表明其预测准确度最高。

结论

NLR、PLR单独及联合指标对于TBI患者的预后均有一定的预测价值,NLR、PLR值越大,TBI患者6个月预后不良可能性越大,NLR、PLR结合患者年龄和GCS评分共同预测患者预后时准确度显著提升。

Objective

To study the changes of biochemical and inflammatory indicators in patients with traumatic brain injury (TBI), and to explore the predictive value of peripheral blood neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) on prognosis of patients.

Methods

The general data of 132 patients with TBI admitted to Neurosurgery Department of Jining First People’s Hospital from January 2019 to January 2020 were analyzed retrospectively. According to the GOS score 6 months after injury, the patients were divided into good prognosis group (91 cases) and poor prognosis group (41 cases). The general clinical data and laboratory examination indicators were collected to analyze whether there were any differences in NLR and PLR between the two groups. Multivariate logistic regression was used to analyze the independent risk factors affecting the poor prognosis of TBI. The prognosis model was constructed, and the predictive value of NLR and PLR alone and combined indicators on the prognosis of patients was obtained by receiver operating characteristic curve (ROC) analysis.

Results

There were significant differences in NLR and PLR between the two groups (P<0.05). Multivariate regression analysis showed that age, admission GCS score, NLR and PLR were independent risk factors for poor prognosis at 6 months after injury in TBI patients (P<0.05). According to the independent risk factors obtained in this study, the patient prognosis model was constructed. Model 1: age+GCS score; Model 2: age+GCS score+NLR; Model 3: age+GCS score+PLR; Model 4: age+GCS score+NLR. The ROC curve analysis showed that the area under curve (AUC) of each model were 0.685, 0.822, 0.671 and 0.864 respectively. The AUC of model 4 is the largest, which indicates that the prediction accuracy of model 4 is the highest.

Conclusion

NLR, PLR and their combined indicators have certain predictive value for the prognosis of TBI patients. The greater the NLR and PLR values, the greater the possibility of poor prognosis in 6 months of TBI patients. The accuracy of NLR, PLR combined with age and GCS score in predicting the prognosis of TBI patients is significantly improved.

表1 2组患者的一般临床资料比较
表2 2组患者的血常规、NLR及PLR比较
表3 影响颅脑损伤患者预后的多因素Logistic分析
图1 与颅脑损伤预后不良相关的指标构建预后模型的ROC分析
表4 不同模型预测颅脑损伤患者伤后6个月预后的ROC结果
[1]
Iaccarino C, Carretta A, Nicolosi F, et al. Epidemiology of severe traumatic brain injury[J]. J Neurosurg Sci, 2018, 62(5): 535-541.
[2]
Hazeldine J, Hampson P, Lord JM. The impact of trauma on neutrophil function[J]. Injury, 2014, 45(12): 1824-1833.
[3]
Osler T, Cook A, Glance LG, et al. The differential mortality of Glasgow coma score in patients with and without head injury[J]. Injury, 2016, 47(9): 1879-1885.
[4]
靳佳敏,马翠红,范昆鹏,等.血浆NLR、PLR及其联合指标对脑梗死溶栓患者预后的预测价值[J].临床荟萃, 2020, 35(3): 228-232.
[5]
黎开宇,钟晖东,张海冰,等.术前中性粒细胞与淋巴细胞比值对重度颅脑外伤预后的预测价值[J].海南医学, 2018, 29(13): 1814-1817.
[6]
Büki A, Barzó P, Demeter B, et al. Guidelines for the treatment of traumatic brain injury-2017[J]. Ideggyogy Sz, 2017, 70(7-8): 223-245.
[7]
Karibe H, Hayashi T, Narisawa A, et al. Clinical characteristics and outcome in elderly patients with traumatic brain injury: for establishment of management strategy[J]. Neurol Med Chir (Tokyo), 2017, 57(8): 418-425.
[8]
Caterino JM, Raubenolt A, Cudnik MT. Modification of Glasgow coma scale criteria for injured elders[J]. Acad Emerg Med, 2011, 18(10): 1014-1021.
[9]
McIntyre A, Mehta S, Aubut J, et al. Mortality among older adults after a traumatic brain injury: a meta-analysis[J]. Brain Inj, 2013, 27(1): 31-40.
[10]
张小兵,高亮,吉宋泉,等.中性粒细胞-淋巴细胞比值在颅脑损伤预后评估中的作用[J].中国临床神经外科杂志, 2020, 25(7): 441-442, 446.
[11]
Sulhan S, Lyon KA, Shapiro LA, et al. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: Pathophysiology and potential therapeutic targets[J]. J Neurosci Res, 2020, 98(1): 19-28.
[12]
Nguyen HX, O’Barr TJ, Anderson AJ. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha[J]. J Neurochem, 2007, 102(3): 900-912.
[13]
Roth TL, Nayak D, Atanasijevic T, et al. Transcranial amelioration of inflammation and cell death after brain injury[J]. Nature, 2014, 505(7482): 223-228.
[14]
Hofstetter HH, Sewell DL, Liu F, et al. Autoreactive T cells promote post-traumatic healing in the central nervous system[J]. J Neuroimmunol, 2003, 134(1-2): 25-34.
[15]
Schwartz M, Moalem G. Beneficial immune activity after CNS injury: prospects for vaccination[J]. J Neuroimmunol, 2001, 113(2): 185-192.
[16]
Lattanzi S, Brigo F, Trinka E, et al. Neutrophil-to-lymphocyte ratio in acute cerebral hemorrhage: a system review[J]. Transl Stroke Res, 2019, 10(2): 137-145.
[17]
Ploplis VA, Donahue DL, Sandoval-Cooper MJ, et al. Systemic platelet dysfunction is the result of local dysregulated coagulation and platelet activation in the brain in a rat model of isolated traumatic brain injury[J]. J Neurotrauma, 2014, 31(19): 1672-1675.
[18]
Nekludov M, Bellander BM, Blombäck M, et al. Platelet dysfunction in patients with severe traumatic brain injury[J]. J Neurotrauma, 2007, 24(11): 1699-1706.
[19]
Yuan Q, Yu J, Wu X, et al. Prognostic value of coagulation tests for in-hospital mortality in patients with traumatic brain injury[J]. Scand J Trauma Resusc Emerg Med, 2018, 26(1): 3.
[20]
Dijkland SA, Foks KA, Polinder S, et al. Prognosis in moderate and severe traumatic brain injury: a systematic review of contemporary models and validation studies[J]. J Neurotrauma, 2020, 37(1): 1-13.
[1] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[2] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[3] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[4] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[5] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[6] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[7] 潘冰, 吕少诚, 赵昕, 李立新, 郎韧, 贺强. 淋巴结清扫数目对远端胆管癌胰十二指肠切除手术疗效的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 608-612.
[8] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[9] 张文华, 陶焠, 胡添松. 不同部位外生型肝癌临床病理特点及其对术后肝内复发和预后影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 651-655.
[10] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[11] 叶文涛, 吴忠均, 廖锐. 癌旁组织ALOX15表达与肝癌根治性切除术后预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 708-712.
[12] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[13] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[14] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[15] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
阅读次数
全文


摘要