切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2020, Vol. 06 ›› Issue (01) : 53 -56. doi: 10.3877/cma.j.issn.2095-9141.2020.01.013

所属专题: 专题评论 文献

综述

基于TCD脑血流频谱评估颅脑损伤患者颅内压的研究进展
韩帅1, 李文臣1, 王海峰1, 别黎1,()   
  1. 1. 130021 长春,吉林大学第一医院神经外科
  • 收稿日期:2019-11-20 出版日期:2020-02-15
  • 通信作者: 别黎
  • 基金资助:
    国家自然科学基金(81572476)

Progression of intracranial pressure in patients with traumatic brain injury based on TCD cerebral blood flow spectrum

Shuai Han1, Wenchen Li1, Haifeng Wang1, Li Bie1,()   

  1. 1. Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
  • Received:2019-11-20 Published:2020-02-15
  • Corresponding author: Li Bie
  • About author:
    Corresponding author: Bie Li, Email:
引用本文:

韩帅, 李文臣, 王海峰, 别黎. 基于TCD脑血流频谱评估颅脑损伤患者颅内压的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2020, 06(01): 53-56.

Shuai Han, Wenchen Li, Haifeng Wang, Li Bie. Progression of intracranial pressure in patients with traumatic brain injury based on TCD cerebral blood flow spectrum[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2020, 06(01): 53-56.

经颅多普勒(TCD)可以动态无创地监测和评估脑血管血流动力学变化,而颅内压(ICP)是评估颅脑损伤患者颅内病情的重要指标。临床工作中一直在探索一种准确、方便的无创ICP监测方法,由于TCD具有床旁无创、低廉快捷的优势,并且通过TCD检测脑血流频谱还可间接评估ICP变化,对临床治疗有重要的指导意义。本文综合国内外研究,结合ICP监测技术和TCD技术,并整合既往文献中基于搏动指数建立ICP评估模型的公式方法,就TCD脑血流频谱评估ICP的研究进展作一综述。

Transcranial doppler (TCD) can dynamically and non-invasively monitor and evaluate cerebral hemodynamic changes, and intracranial pressure (ICP) is an important indicator for assessing the intracranial condition of patients with traumatic brain injury. In clinical work, an accurate and convenient non-invasive ICP monitoring method has been being explored. Because TCD has the advantages of non-invasive, low-cost and quick at the bedside, and the detection of cerebral blood flow spectrum by TCD can also indirectly evaluate ICP changes. This is great significance for clinical guidance of treatment. Now this article combines domestic and foreign research, and combines ICP monitoring technology and TCD technology, the formula and method of establishing ICP evaluation model based on pulsatility index in the previous literature are integrated, and the research progress of TCD cerebral blood flow spectrum evaluation ICP is reviewed.

表1 TCD各项参数和ICP的关系研究
[1]
Marshall LF,Smith RW,Shapiro HM. The outcome with aggressive treatment in severe head injuries. Part I: the significance of intracranial pressure monitoring[J]. J Neurosurg, 1979, 50(1): 20-25.
[2]
Nagai H,Moritake K,Takaya M. Correlation between transcranial doppler ultrasonography and regional cerebral blood flow in experimental intracranial hypertension[J]. Stroke, 1997, 28(3): 603-607.
[3]
Chan KH,Miller JD,Dearden NM, et al. The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flowvelocity and jugular bulb venous oxygen saturation after severe brain injury[J]. J Neurosurg, 1922, 77(1): 55-61.
[4]
Homburg AM,Jakobsen M,Enevoldsen E. Transcranial doppler recordings in raised intracranial pressure[J]. Acta Neurol Scand, 1993, 87(6): 488-493.
[5]
Melo JR,Di Rocco F,Blanot S, et al. Transcranial doppler can predict intracranial hypertension in children with severe traumatic brain injuries[J]. Childs Nerv Syst, 2011, 27(6): 979-984.
[6]
O’Brien NF,Maa T,Reuter-Rice K. Noninvasive screening for intracranial hypertension in children with acute, severe traumatic brain injury[J]. J Neurosurg Pediatr, 2015, 16(4): 420-425.
[7]
Schmidt B,Klingelhöfer J,Schwarze JJ, et al. Noninvasive prediction of intracranial pressure curves using transcranial doppler ultrasonography and blood pressure curves[J]. Stroke, 1997, 28(12):2465-2472.
[8]
Czosnyka M,Matta BF,Smielewski P, et al. Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial doppler ultrasonography[J]. J Neurosurg, 1998, 88(5): 802-808.
[9]
Varsos GV,Kolias AG,Smielewski P, et al. A noninvasive estimation of cerebral perfusion pressure using critical closing pressure[J]. J Neurosurg, 2015, 123(3): 638-648.
[10]
Budohoski KP,Schmidt B,Smielewski P, et al. Non-invasively estimated ICP pulse amplitude strongly correlates with outcome after TBI[J]. Acta Neurochir Suppl, 2012, 114: 121-125.
[11]
Aaslid R,Markwalder TM,Nornes H, et al. Noninvasive transcranial doppler ultrasound recording of flow velocity in basal cerebral arteries[J]. J Neurosurg, 1982, 57(6): 769-774.
[12]
Oertel MF,Scharbrodt W,Wachter D, et al. Arteriovenous differences of oxygen and transcranial doppler sonography in the management of aneurysmatic subarachnoid hemorrhage[J]. J Clin Neurosci, 2008, 15(6): 630-636.
[13]
Mokri B. The monro-kellie hypothesis: applications in CSF volume depletion[J]. Neurology, 2001, 56(12): 1746-1748.
[14]
Carney N,Totten AM,O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition[J]. Neurosurgery, 2017, 80(1): 6-15.
[15]
中华医学会神经病学分会神经重症协作组,中国医师协会神经内科医师分会神经重症专业委员会.难治性颅内压增高的监测与治疗中国专家共识[J].中华医学杂志, 2018, 98(45): 3643-3652.
[16]
Han J,Yang S,Zhang C, et al. Impact of intracranial pressure monitoring on prognosis of patients with severe traumatic brain injury: a PRISMA systematic review and meta-analysis[J]. Medicine, 2016, 95(7): e2827.
[17]
Cremer OL. Does ICP monitoring make a difference in neurocritical care?[J]. Eur J Anaesthesiol Suppl, 2008, 42: 87-93.
[18]
Aucoin PJ,Kotilainen HR,Gantz NM, et al. Intracranial pressure monitors. Epidemiologic study of risk factors and infections[J]. Am J Med, 1986, 80(3): 369-376.
[19]
Brandstätter H,Schulz P,Polunic I, et al. Purification and biochemical characterization of functional complement factor H from humanplasma fractions[J]. Vox Sang, 2012, 103(3): 201-212.
[20]
Kasuga Y,Nagai H,Hasegawa Y, et al. Transmission characteristics of pulse waves in the intracranial cavity of dogs[J]. J Neurosurg, 1987, 66(6): 907-914.
[21]
Cardim D,Robba C,Donnelly J, et al. Prospective study on noninvasive assessment of intracranial pressure in traumatic brain-injured patients: comparison of four methods[J]. J Neurotrauma, 2016, 33(8): 792-802.
[22]
Bellner J,Romner B,Reinstrup P, et al. Transcranial doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP)[J]. Surg Neurol, 2004, 62(1): 45-51.
[23]
Martin NA,Patwardhan RV,Alexander MJ, et al. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm[J]. J Neurosurg, 1997, 87(1): 9-19.
[24]
Voulgaris SG,Partheni M,Kaliora H, et al. Early cerebral monitoring using the transcranial Doppler pulsatility index in patients with severe brain trauma[J]. Med Sci Monit, 2005, 11(2): CR49-CR52.
[25]
Brandi G,Béchir M,Sailer S, et al. Transcranial color-coded duplex sonography allows to assess cerebral perfusion pressure noninvasively following severe traumatic brain injury[J]. Acta Neurochir, 2010, 152(6): 965-972.
[26]
Zweifel C,Czosnyka M,Carrera E, et al. Reliability of the blood flow velocity pulsatility index for assessment of intracranial and cerebral perfusion pressures in head-injured patients[J]. Neurosurgery, 2012, 71(4): 853-861.
[27]
de Riva N,Budohoski KP,Smielewski P, et al. Transcranial Doppler pulsatility index: what it is and what it isn't[J]. Neurocrit Care, 2012, 17(1): 58-66.
[28]
Zeiler FA,Czosnyka M,Smielewski P. Optimal cerebral perfusion pressure via transcranial doppler in TBI: application of robotic technology[J]. Acta Neurochir, 2018, 160(11): 2149-2157.
[1] 徐珍娥, 杨娅丽, 徐晨霞, 向巴曲西, 王家蓉. 无创脑水肿监测技术在高原地区重度窒息新生儿脑水肿中的临床应用[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 114-119.
[2] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[3] 吴东阳, 林向丹, 石佐林, 赵玉龙, 王振, 文安国, 纪鑫, 李俊之, 赵明光. NF-L、NLRP3、S100B 蛋白在颅脑损伤严重程度及预后评估中的应用价值[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 279-285.
[4] 罗磊, 熊建平, 郑宏伟, 王嗣嵩, 柴祥, 吴青, 潘海鹏. 静脉留置针穿刺引流治疗颅骨修补术后硬膜外积液一例报道[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 315-317.
[5] 冯铭, 孙洪涛. 动脉瘤性蛛网膜下腔出血的颅内压监测与管理[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 248-253.
[6] 从长春, 王春琳, 武孝刚, 王金标, 章福彬, 孙磊, 王李. 重型颅脑损伤患者呼吸机相关性肺炎的危险因素及病原学分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 151-157.
[7] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[8] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[9] 鹿海龙, 朱玉辐, 贺雪凤, 蔡廷江, 王栋, 朱圣玲, 张恩刚, 王策. 创伤性颅脑损伤二次手术的危险因素分析及预警模型构建[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 97-101.
[10] 李鑫, 刘炳辉, 程名, 王凡, 刘玉明, 周绍明. 基于Rotterdam CT评分评估的颅脑损伤术中控制性减压的临床应用价值[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 16-21.
[11] 刘彪, 巍山, 关永胜. 基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 22-27.
[12] 罗丹, 柏宋磊, 易峰. HMGB1-TLR2/TLR4/RAGE通路与颅脑损伤并发认知功能障碍病情变化的关系研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 28-34.
[13] 袁宝玉, 管义祥, 王东流, 陆正. 不同时机颅骨修补术治疗颅脑外伤的临床疗效[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 35-41.
[14] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[15] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
阅读次数
全文


摘要