切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (03) : 169 -173. doi: 10.3877/cma.j.issn.2095-9141.2024.03.008

综述

神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响
辛强1, 朱文豪1, 何川1, 李文臣1, 陈勃1, 王海峰1,()   
  1. 1. 130021 长春,吉林大学第一医院神经创伤外科
  • 收稿日期:2023-11-16 出版日期:2024-06-15
  • 通信作者: 王海峰

Effect of glial cell-derived exosomal miRNAs on neuroinflammation after traumatic brain injury

Qiang Xin1, Wenhao Zhu1, Chuan He1, Wenchen Li1, Bo Chen1, Haifeng Wang1,()   

  1. 1. Department of Neurotrauma Surgery, First Hospital of Jilin University, Changchun 130021, China
  • Received:2023-11-16 Published:2024-06-15
  • Corresponding author: Haifeng Wang
  • Supported by:
    National Natural Science Foundation of China(81871555); Fund of Jilin Provincial Science and Technology Department(20200603002SF); Fund of Jilin Provincial Finance Department(JLSCZD2019-006, JLSWSRCZX2021-028, 2018SCZWSZX-006)
引用本文:

辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.

Qiang Xin, Wenhao Zhu, Chuan He, Wenchen Li, Bo Chen, Haifeng Wang. Effect of glial cell-derived exosomal miRNAs on neuroinflammation after traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(03): 169-173.

创伤性颅脑损伤(TBI)的进展是持续性的,脑组织受损可以激活神经胶质细胞,活化的神经胶质细胞通过外泌体介导的微小核糖核酸(miRNAs)对神经元发挥保护或毒性作用。神经胶质细胞分泌外泌体中的部分miRNAs可以减轻TBI后神经炎症,缓解继发性损伤,因此调节神经胶质细胞的活化有望改善TBI预后。本文围绕神经胶质细胞来源的外泌体miRNAs对TBI后神经炎症的影响展开综述,以期为相关神经炎症的治疗提供新的思路。

The progression of traumatic brain injury (TBI) is continuous, and damage to brain tissue can activate neuroglia, which can exert protective or toxic effects on neurons through exosome-mediated miRNAs. Secretion of some miRNAs from neuroglia in exosomes can reduce neuroinflammation after TBI and alleviate secondary cranial injury, therefore, regulating the activation of neuroglia is expected to improve the prognosis of TBI. This article reviews the effects of glial cell-derived exosome miRNAs on neuroinflammation after TBI to provide new ideas for the treatment of related neuroinflammation.

[9]
Chiu CC, Liao YE, Yang LY, et al. Neuroinflammation in animal models of traumatic brain injury[J]. J Neurosci Methods, 2016, 272: 38-49. DOI: 10.1016/j.jneumeth.2016.06.018.
[10]
Gardner RC, Burke JF, Nettiksimmons J, et al. Dementia risk after traumatic brain injury vs nonbrain trauma: the role of age and severity[J]. JAMA Neurol, 2014, 71(12): 1490-1497. DOI: 10.1001/jamaneurol.2014.2668.
[11]
Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease[J]. Mol Cell Neurosci, 2015, 66(Pt B): 75-80. DOI: 10.1016/j.mcn.2015.03.001.
[12]
Loane DJ, Kumar A, Stoica BA, et al. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation[J]. J Neuropathol Exp Neurol, 2014, 73(1): 14-29. DOI: 10.1097/nen.0000000000000021.
[13]
陈艳清,甄然,杨璇,等.星形胶质细胞的功能作用研究进展[J].脑与神经疾病杂志, 2020, 28(5): 327-330.
[14]
Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system[J]. Physiol Rev, 2001, 81(2): 871-927. DOI: 10.1152/physrev.2001.81.2.871.
[15]
Frühbeis C, Fröhlich D, Kuo WP, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication[J]. PLoS Biol, 2013, 11(7): e1001604. DOI: 10.1371/journal.pbio.1001604.
[16]
Frühbeis C, Fröhlich D, Kuo WP, et al. Extracellular vesicles as mediators of neuron-glia communication[J]. Front Cell Neurosci, 2013, 7: 182. DOI: 10.3389/fncel.2013.00182.
[17]
David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury[J]. Nat Rev Neurosci, 2011, 12(7): 388-399. DOI: 10.1038/nrn3053.
[18]
李虹莹,沈缘,吴巧凤,等.小胶质细胞极化信号通路在神经炎症中的研究进展[J].实用医学杂志, 2022, 38(14): 1838-1841, 1846. DOI: 10.3969/j.issn.1006-5725.2022.14.024.
[19]
Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization-new prospects for brain repair[J]. Nat Rev Neurol, 2015, 11(1): 56-64. DOI: 10.1038/nrneurol.2014.207.
[20]
Wu H, Zheng J, Xu S, et al. Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury[J]. J Neuroinflammation, 2021, 18(1): 2. DOI: 10.1186/s12974-020-02041-7.
[21]
Wang G, Zhang J, Hu X, et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury[J]. J Cereb Blood Flow Metab, 2013, 33(12): 1864-1874. DOI: 10.1038/jcbfm.2013.146.
[22]
Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia[J]. Stroke, 2012, 43(11): 3063-3070. DOI: 10.1161/strokeaha.112.659656.
[23]
Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine[J]. Cells, 2021, 10(8): 1959. DOI: 10.3390/cells10081959.
[24]
Devoto C, Lai C, Qu BX, et al. Exosomal microRNAs in military personnel with mild traumatic brain injury: preliminary results from the chronic effects of neurotrauma consortium biomarker discovery project[J]. J Neurotrauma, 2020, 37(23): 2482-2492. DOI: 10.1089/neu.2019.6933.
[25]
Ponomarev ED, Veremeyko T, Barteneva N, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway[J]. Nat Med, 2011, 17(1): 64-70. DOI: 10.1038/nm.2266.
[26]
Moore CS, Rao VT, Durafourt BA, et al. miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization[J]. Ann Neurol, 2013, 74(5): 709-720. DOI: 10.1002/ana.23967.
[27]
Wei M, Li C, Yan Z, et al. Activated microglia exosomes mediated miR-383-3p promotes neuronal necroptosis through inhibiting ATF4 expression in intracerebral hemorrhage[J]. Neurochem Res, 2021, 46(6): 1337-1349. DOI: 10.1007/s11064-021-03268-3.
[28]
Prada I, Gabrielli M, Turola E, et al. Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations[J]. Acta Neuropathol, 2018, 135(4): 529-550. DOI: 10.1007/s00401-017-1803-x.
[29]
Zhang D, Cai G, Liu K, et al. Microglia exosomal miRNA-137 attenuates ischemic brain injury through targeting Notch1[J]. Aging (Albany NY), 2021, 13(3): 4079-4095. DOI: 10.18632/aging.202373.
[30]
Ge X, Guo M, Hu T, et al. Increased microglial exosomal miR-124-3p alleviates neurodegeneration and improves cognitive outcome after rmTBI[J]. Mol Ther, 2020, 28(2): 503-522. DOI: 10.1016/j.ymthe.2019.11.017.
[31]
Huang S, Ge X, Yu J, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons[J]. FASEB J, 2018, 32(1): 512-528. DOI: 10.1096/fj.201700673R.
[32]
Li D, Huang S, Yin Z, et al. Increases in miR-124-3p in microglial exosomes confer neuroprotective effects by targeting FIP200-mediated neuronal autophagy following traumatic brain injury[J]. Neurochem Res, 2019, 44(8): 1903-1923. DOI: 10.1007/s11064-019-02825-1.
[33]
Zhao C, Deng Y, He Y, et al. Decreased level of exosomal miR-5121 released from microglia suppresses neurite outgrowth and synapse recovery of neurons following traumatic brain injury[J]. Neurotherapeutics, 2021, 18(2): 1273-1294. DOI: 10.1007/s13311-020-00999-z.
[34]
Li C, Qin T, Liu Y, et al. Microglia-derived exosomal microRNA-151-3p enhances functional healing after spinal cord injury by attenuating neuronal apoptosis via regulating the p53/p21/CDK1 signaling pathway[J]. Front Cell Dev Biol, 2021, 9: 783017. DOI: 10.3389/fcell.2021.783017.
[35]
Liu Y, Li YP, Xiao LM, et al. Extracellular vesicles derived from M2 microglia reduce ischemic brain injury through microRNA-135a-5p/TXNIP/NLRP3 axis[J]. Lab Invest, 2021, 101(7): 837-850. DOI: 10.1038/s41374-021-00545-1.
[36]
Shakespear N, Ogura M, Yamaki J, et al. Astrocyte-derived exosomal microrna miR-200a-3p prevents MPP+-induced apoptotic cell death through down-regulation of MKK4[J]. Neurochem Res, 2020, 45(5): 1020-1033. DOI: 10.1007/s11064-020-02977-5.
[37]
Du L, Jiang Y, Sun Y. Astrocyte-derived exosomes carry microRNA-17-5p to protect neonatal rats from hypoxic-ischemic brain damage via inhibiting BNIP-2 expression[J]. Neurotoxicology, 2021, 83: 28-39. DOI: 10.1016/j.neuro.2020.12.006.
[38]
Chai H, Liu M, Tian R, et al. miR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines[J]. Acta Biochim Biophys Sin (Shanghai), 2011, 43(3): 217-225. DOI: 10.1093/abbs/gmq125.
[39]
Long X, Yao X, Jiang Q, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury[J]. J Neuroinflammation, 2020, 17(1): 89. DOI: 10.1186/s12974-020-01761-0.
[40]
Xu L, Cao H, Xie Y, et al. Exosome-shuttled miR-92b-3p from ischemic preconditioned astrocytes protects neurons against oxygen and glucose deprivation[J]. Brain Res, 2019, 1717: 66-73. DOI: 10.1016/j.brainres.2019.04.009.
[1]
武秀权,张磊,吴霜,等.日均发热次数对颅脑损伤伤情影响的临床意义[J].中华神经创伤外科电子杂志, 2021, 7(3): 137-140. DOI: 10.3877/cma.j.issn.2095-9141.2021.03.003.
[2]
中国神经科学学会神经损伤与修复分会.脑损伤神经功能损害与修复专家共识[J].中华神经创伤外科电子杂志, 2016, 2(2): 100-104. DOI: 10.3877/cma.j.issn.2095-9141.2016.02.010.
[3]
Cheng G, Kong RH, Zhang LM, et al. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies[J]. Br J Pharmacol, 2012, 167(4): 699-719. DOI: 10.1111/j.1476-5381.2012.02025.x.
[4]
Greig NH, Tweedie D, Rachmany L, et al. Incretin mimetics as pharmacologic tools to elucidate and as a new drug strategy to treat traumatic brain injury[J]. Alzheimers Dement, 2014, 10(1 Suppl): S62-S75. DOI: 10.1016/j.jalz.2013.12.011.
[5]
LaPlaca MC, Simon CM, Prado GR, et al. CNS injury biomechanics and experimental models[J]. Prog Brain Res, 2007, 161: 13-26. DOI: 10.1016/s0079-6123(06)61002-9.
[6]
Xu H, Jia Z, Ma K, et al. Protective effect of BMSCs-derived exosomes mediated by BDNF on TBI via miR-216a-5p[J]. Med Sci Monit, 2020, 26: e920855. DOI: 10.12659/msm.920855.
[7]
Ray SK, Dixon CE, Banik NL. Molecular mechanisms in the pathogenesis of traumatic brain injury[J]. Histol Histopathol, 2002, 17(4): 1137-1152. DOI: 10.14670/hh-17.1137.
[8]
Ng SY, Lee AYW. Traumatic brain injuries: pathophysiology and potential therapeutic targets[J]. Front Cell Neurosci, 2019, 13: 528. DOI: 10.3389/fncel.2019.00528.
[41]
Xu T, Wang H, Jiang M, et al. The E3 ubiquitin ligase CHIP/miR-92b/PTEN regulatory network contributes to tumorigenesis of glioblastoma[J]. Am J Cancer Res, 2017, 7(2): 289-300.
[42]
Gayen M, Bhomia M, Balakathiresan N, et al. Exosomal microRNAs released by activated astrocytes as potential neuroinflammatory biomarkers[J]. Int J Mol Sci, 2020, 21(7). DOI: 10.3390/ijms21072312.
[43]
Yin Z, Han Z, Hu T, et al. Neuron-derived exosomes with high miR-21-5p expression promoted polarization of M1 microglia in culture[J]. Brain Behav Immun, 2020, 83: 270-282. DOI: 10.1016/j.bbi.2019.11.004.
[44]
Li D, Huang S, Zhu J, et al. Exosomes from miR-21-5p-increased neurons play a role in neuroprotection by suppressing Rab11a-mediated neuronal autophagy in vitro after traumatic brain injury[J]. Med Sci Monit, 2019, 25: 1871-1885. DOI: 10.12659/msm.915727.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[3] 林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[6] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[7] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[8] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[9] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[10] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[11] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[12] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[13] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[14] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
[15] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?