切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2020, Vol. 06 ›› Issue (01) : 57 -60. doi: 10.3877/cma.j.issn.2095-9141.2020.01.014

所属专题: 文献

综述

生物3D打印在神经外科领域中的研究进展
张春声1, 李海燕2, 徐如祥3, 徐弢2,()   
  1. 1. 015000 内蒙古巴彦淖尔市医院神经外科
    2. 100084 北京,清华大学机械工程系
    3. 610072 成都,四川省人民医院神经外科
  • 收稿日期:2019-11-28 出版日期:2020-02-15
  • 通信作者: 徐弢
  • 基金资助:
    军队后勤开放研究科研项目(BWS17J036)

Research progress of 3D bioprinting in neurosurgery

Chunsheng Zhang1, Haiyan Li2, Ruxiang Xu3, Tao Xu2,()   

  1. 1. Department of Neurosurgery, Bayannur Hospital, Bayannur 015000, Inner Mongolia, China
    2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
    3. Department of Neurosurgery, Sichuan Provincial People’s Hospital, Chengdu 610072, China
  • Received:2019-11-28 Published:2020-02-15
  • Corresponding author: Tao Xu
  • About author:
    Corresponding author: Xu Tao, Email:
引用本文:

张春声, 李海燕, 徐如祥, 徐弢. 生物3D打印在神经外科领域中的研究进展[J]. 中华神经创伤外科电子杂志, 2020, 06(01): 57-60.

Chunsheng Zhang, Haiyan Li, Ruxiang Xu, Tao Xu. Research progress of 3D bioprinting in neurosurgery[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2020, 06(01): 57-60.

生物3D打印技术结合临床医学需求的研究趋势愈加明显,尤其在神经外科脑肿瘤、颅骨修补、神经和血管方面的研究日渐增多,但目前还未真正运用到临床。随着生物材料以及细胞技术等的不断发展,生物3D打印技术在神经外科领域中的应用将会取得突破进展。本文通过回顾目前国内外生物3D打印技术在神经外科领域中的临床应用和前沿研究,总结生物3D打印技术在神经外科领域的应用现状,分析未来应用的发展趋势,综述如下。

The research trend of combining 3D bioprinting technology with clinical medical needs is becoming more and more obvious, especially in neurosurgery, as there is increasing need of brain tumor removal, skull repair, nerve and vascular regeneration. However, it has not been applied to clinical practice yet. With the continuous development of biomaterials and cell technology, the application of 3D bioprinting technology in the field of neurosurgery will make more and more breakthroughs. This article reviews the clinical application and frontier research of 3D bioprinting technology in neurosurgery at home and abroad, summarizes the application status of 3D bioprinting technology in neurosurgery, and analyzes the development trend of its application in the future.

[1]
徐弢. 3D打印技术在生物医学领域的应用[J].中华神经创伤外科电子杂志, 2015, 1(1): 57-58.
[2]
Moroni L,Boland T,Burdick JA, et al. Biofabrication: a guide to technology and terminology[J]. Trends Biotechnol, 2018, 36(4): 384-402.
[3]
Jessop ZM,Al-Sabah A,Gardiner MD, et al. 3D bioprinting for reconstructive surgery: principles, applications and challenges[J]. J Plast Reconstr Aesthet Surg, 2017, 70(9): 1155-1170.
[4]
Mashiko T,Konno T,Kaneko N, et al. Training in brain retraction using a self-made three-dimensional model[J]. World Neurosurg, 2015, 84(2): 585-590.
[5]
Kimura T,Morita A,Nishimura K, et al. Simulation of and training for cerebral aneurysm clipping with 3-dimensional models[J]. Neurosurgery, 2009, 65(4): 719-725; discussion 725-726.
[6]
Tai BL,Rooney D,Stephenson F, et al. Development of a 3D-printed external ventricular drain placement simulator: technical note[J]. J Neurosurg, 2015, 123(4): 1070-1076.
[7]
Lan Q,Chen A,Zhang T, et al. Development of 3D printed craniocerebral models for simulated neurosurgery[J]. World Neurosurg, 2016, 91: 434-442.
[8]
Wang X,Dai X,Zhang X, et al. 3D bioprinted glioma cell-laden scaffolds enriching glioma stem cells via epithelial-mesenchymal transition[J]. J Biomed Mater Res A, 2019, 107(2): 383-391.
[9]
Wang X,Li X,Dai X, et al. Bioprinting of glioma stem cells improves their endotheliogenic potential[J]. Colloids Surf B Biointerfaces, 2018, 171: 629-637.
[10]
Wang X,Li X,Dai X, et al. Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells[J]. Colloids Surf B Biointerfaces, 2018, 171: 291-299.
[11]
Wang X,Dai X,Zhang X, et al. Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of differentextracellular matrix[J]. Biochem Biophys Res Commun, 2018, 498(4): 1052-1057.
[12]
Yi HG,Jeong YH,Kim Y, et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy[J]. Nat Biomed Eng, 2019, 3(7): 509-519.
[13]
Kang HW,Lee SJ,Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J]. Nat Biotechnol, 2016, 34(3): 312-319.
[14]
Chen H,Zhang J,Li X, et al. Multi-level customized 3D printing for autogenous implants in skull tissue engineering[J]. Biofabrication, 2019, 11(4): 045007.
[15]
Hu Y,Wu Y,Gou Z, et al. 3D-engineering of cellularized conduits for peripheral nerve regeneration[J]. Sci Rep, 2016, 6: 32184.
[16]
Yurie H,Ikeguchi R,Aoyama T, et al. The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheralnerve regeneration in a rat sciatic nerve model[J]. PLoS One, 2017, 12(2): e0171448.
[17]
Johnson BN,Lancaster KZ,Zhen G, et al. 3D printed anatomical nerve regeneration pathways[J]. Adv Funct Mater, 2015, 25(39): 6205-6217.
[18]
Koffler J,Zhu W,Qu X, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair[J]. Nat Med, 2019, 25(2): 263-269.
[19]
Li X,Liu L,Zhang X, et al. Research and development of 3D printed vasculature constructs[J]. Biofabrication, 2018, 109(3): 032002.
[20]
Kolesky DB,Truby RL,Gladman AS, et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs[J]. Adv Mater,2014, 26(19): 3124-3130.
[21]
Grigoryan B,Paulsen SJ,Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439): 458-464.
[22]
Skylar-Scott MA,Uzel SGM,Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascularchannels[J]. Sci Adv, 2019, 5(9): eaaw2459.
[1] 王希岗, 张波, 李鸣, 高敏, 薛建新. 神经外科手术部位感染在HIV感染者与非HIV感染者中的临床差异[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 228-233.
[2] 王硕. 脊髓脊柱神经外科的发展与展望[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 257-260.
[3] 赵浩, 刘琛, 曲鑫, 徐跃峤, 齐猛, 陈文劲, 程玮涛, 尚峰, 蒋丽丹, 王宁. 神经外科围术期丙戊酸盐诱导高氨血症的临床研究[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 218-223.
[4] 朱先理, 王守森. 外科机械手在垂体外科的应用[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 65-68.
[5] 李建飞, 杨在平, 陈远亮. 3D打印技术在神经外科中的应用及思考[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 376-379.
[6] 韦维, 李忠华, 黄礼德. 机器人辅助第四脑室血肿穿刺抽吸外引流术[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 255-256.
[7] 李俊, 马廉亭. 多模态三维影像融合技术体系的建立及在脑血管病诊疗中的应用[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 129-134.
[8] 蔡金全, 蒋传路, 孟祥祺, 马文斌, 陈浩. 神经外科教学中如何进行思政建设的探索研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 370-373.
[9] 赵继宗. 神经外科学创新发展愿景[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 257-259.
[10] 甄雪克. 手术机器人在神经外科精准诊疗中的应用[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 319-320.
[11] 高谋, 徐如祥, 董勤, 郭莉丽, 邹丹. 文献编译互动教学模式在神经外科研究生科研思维能力培养中的应用[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 245-248.
[12] 周良辅. 人工智能在临床医学的应用:现状、挑战和对策[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(03): 129-131.
[13] 徐如祥. 5G+智慧移动医疗技术与神经外科临床应用[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 62-63.
[14] 冯韬, 卢超, 孟飞, 王逸鹤, 张华强, 魏鹏虎, 单永治, 赵国光. 立体定向脑电图在儿童致痫性下丘脑错构瘤中的应用[J]. 中华临床医师杂志(电子版), 2021, 15(08): 584-590.
[15] 尹伟琴, 王玉沐, 李亚娟, 李国民. 神经外科ICU患者医院感染特点及危险因素分析[J]. 中华卫生应急电子杂志, 2022, 08(04): 199-204.
阅读次数
全文


摘要