切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 22 -27. doi: 10.3877/cma.j.issn.2095-9141.2024.01.004

临床研究

基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证
刘彪1,(), 巍山1, 关永胜1   
  1. 1. 234200 安徽宿州,安徽省第二人民医院灵璧医院影像科
  • 收稿日期:2023-03-13 出版日期:2024-02-15
  • 通信作者: 刘彪

Construction and validation of prognosis prediction model of traumatic brain injury based on Rotterdam CT score and coagulation function index

Biao Liu1,(), Shan Wei1, Yongsheng Guan1   

  1. 1. Department of Imaging, Lingbi Hospital, the Second People's Hospital of Anhui Province, Suzhou 234200, China
  • Received:2023-03-13 Published:2024-02-15
  • Corresponding author: Biao Liu
引用本文:

刘彪, 巍山, 关永胜. 基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 22-27.

Biao Liu, Shan Wei, Yongsheng Guan. Construction and validation of prognosis prediction model of traumatic brain injury based on Rotterdam CT score and coagulation function index[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(01): 22-27.

目的

探究基于鹿特丹(Rotterdam)CT评分、凝血功能指标的创伤性颅脑损伤(TBI)预后预测模型的构建与验证。

方法

选取安徽省第二人民医院灵璧医院神经外科自2020年1月至2022年1月收治的108例TBI患者为研究对象,所有患者入院24 h内均行CT影像检查与鹿特丹(Rotterdam)CT评分,同时予以凝血功能指标检测,根据治疗后6个月GOS评分将患者分为预后良好组(4~5分)和预后不良组(1~3分),采用二元Logistic回归分析筛选TBI患者预后的独立影响因素,并基于Rotterdam CT评分、凝血功能指标[凝血酶原时间(PT)、活化部分凝血活酶时间(APTT)、D-二聚体(D-D)]构建TBI预后的预测模型,建立受试者工作特征(ROC)曲线评估模型的预测效能。同时收集我院2019年1~12月收治的46例TBI患者的临床资料作为验证集,验证预测模型的准确性。

结果

108例患者中,预后良好组73例,预后不良组35例。预后不良组患者病情重型、合并低血氧、Rotterdam CT评分和凝血功能指标(PT、APTT、D-D)均高于预后良好组,差异均有统计学意义(P<0.05)。Logistic回归分析显示病情、Rotterdam CT评分、PT、D-D是TBI患者预后不良的独立影响因素(P<0.05)。TBI预后不良预测模型Y=3.078×Rotterdam评分CT评分-0.847×PT+1.211×D-D-1.672×病情严重程度-3.195。该预测模型预测预后不良的敏感度为0.886,特异度为0.836,约登指数为0.722,界值为0.262,曲线下面积为0.937。采用Hanley & McNeil法对预测模型与验证曲线比较检验发现,2个模型ROC曲线的AUC比较差异无统计学意义(P<0.05)。

结论

对于TBI患者,采用基于Rotterdam CT评分、凝血功能指标的预测模型有较好准确性,值得推广。

Objective

To explore the construction and validation of a prediction model for the prognosis of traumatic brain injury (TBI) based on Rotterdam CT score and coagulation function indicators.

Methods

A total of 108 TBI patients admitted to Neurosurgery Department of Lingbi Hospital of the Second People's Hospital of Anhui Province from January 2020 to January 2022 were selected as the study objects. CT image examination and Rotterdam CT score were performed on all patients within 24 h of admission, and coagulation function index was also detected. Based on the GOS score at 6 months after treatment, patients were divided into a good prognosis group (4-5 score) and a poor prognosis group (1-3 score). Binary Logistic regression analysis was used to screen the independent factors influencing the prognosis of TBI patients, and a prediction model of TBI prognosis was constructed based on Rotterdam CT score and coagulation function index [prothrombin time (PT), activated partial thromboplastin time (APTT), D-dimer (D-D)]. Receiver operating characteristic (ROC) curve was established to evaluate the predictive efficiency of the model. At the same time, the clinical data of 46 TBI patients admitted to our hospital from January to December 2019 were collected as a validation set to verify the accuracy of the prediction model.

Results

Among 108 patients, there were 73 patients in the good prognosis group and 35 patients in the poor prognosis group. The severity of the disease, combined hypoxemia, Rotterdam CT score, and coagulation function indicators (PT, APTT, D-D) in the poor prognosis group were higher than those in the good prognosis group, with statistical significance (P<0.05). Logistic regression analysis showed that disease condition, Rotterdam CT score, PT, and D-D were independent influencing factors for poor prognosis in TBI patients (P<0.05). The predictive model for poor prognosis of TBI is Y=3.078×Rotterdam score CT score-0.847×PT+1.211×D-1.672×severity severity of the disease-3.195. The prediction model predicted poor prognosis with 0.886 sensitivity, 0.836 specificity, 0.722 Jorden index, 0.262 cut-off value and 0.937 area under curve. The Hanley&McNeil method was used to compare the predictive model and the validation curve, and it was found that there was no statistically significant difference in the AUC comparison of the ROC curves between the two models (P<0.05).

Conclusion

For patients with TBI, the prediction model based on Rotterdam CT score and coagulation function has good accuracy and is worthy of promotion.

表1 2组患者的临床资料比较
Tab.1 Comparison of clinical data between the two groups
表2 2组患者的Rotterdam CT评分、凝血功能指标比较(±s
Tab.2 Comparison of Rotterdam CT score and coagulation function between the two groups (Mean±SD)
表3 TBI患者预后不良的影响因素分析
Tab.3 Analysis of adverse prognostic factors in patients with TBI
图1 预测模型预测预后不良的受试者工作特征曲线
Fig.1 Receiver operating characteristic curve for predicting poor prognosis by the predictive model
表4 TBI患者预后不良的预测模型构建
Tab.4 Construction of prediction model for poor prognosis of TBI patients
图2 验证模型预测预后不良的受试者工作特征曲线
Fig.2 Receiver operating characteristic curve for predicting poor prognosis by the validation model
[1]
王绅,徐旭旭,王如海.血小板-淋巴细胞比值对颅脑损伤患者6个月预后的预测价值[J].中华神经创伤外科电子杂志, 2022, 8(3): 150-154. DOI: 10.3877/cma.j.issn.2095-9141.2022.03.004.
[2]
Liu M, Zhang Q, Zhang J, et al. Clinical study on diagnosis of neonatal craniocerebral injury by b-mode ultrasonography[J]. Panminerva Med, 2022, 64(2): 299-300. DOI: 10.23736/s0031-0808.20.04225-1.
[3]
吉沥. GOS评分在动脉瘤性蛛网膜下腔出血患者预后评估中的作用及其危险因素分析[J].空军医学杂志, 2019, 35(6): 503-505, 518. DOI: 10.3969/j.issn.2095-3402.2019.06.013.
[4]
汪静静,孟庆宁,孙艳秋.鹿特丹CT评分用于评估颅脑损伤患者预后[J].中国介入影像与治疗学, 2022, 19(1): 36-39. DOI: 10.13929/j.issn.1672-8475.2022.01.008.
[5]
游承燕.创伤性脑损伤后凝血功能障碍机制及预后的研究进展[J].重庆医学, 2021, 50(18): 3210-3214. DOI: 10.3969/j.issn.1671-8348.2021.18.033.
[6]
中国神经科学学会神经损伤与修复分会.脑损伤神经功能损害与修复专家共识[J].中华神经创伤外科电子杂志, 2016, 2(2): 100-104. DOI: 10.3877/cma.j.issn.2095-9141.2016.02.010.
[7]
中华医学会神经外科学分会,中国神经外科重症管理协作组.中国重型颅脑创伤早期康复管理专家共识(2017)[J].中华医学杂志, 2017, 97(21): 1615-1623. DOI: 10.3760/cma.j.issn.0376-2491.2017.21.006.
[8]
梁世行,刘成辉,付剑,等. S100蛋白水平联合Rotterdam-CT评分、GCS评分在TBI病情和预后不良评估中的价值[J].卒中与神经疾病, 2022, 29(2): 155-159. DOI: 10.3969/j.issn.1007-0478.2022.02.011.
[9]
Heath Jeffery RC, Dobes J, Chen FK. Eye injuries: understanding ocular trauma[J]. Aust J Gen Pract, 2022, 51(7): 476-482. DOI: 10.31128/ajgp-03-21-5921.
[10]
Ni Y, Wu G, Wu W, et al. Study of compound sanqi nanoparticles for local infection of hydrocephalus patients after neurosurgery medium craniocerebral injury[J]. Cell Mol Biol (Noisy-le-grand), 2022, 68(3): 418-427. DOI: 10.14715/cmb/2022.68.3.46.
[11]
范家权,杨建业,顾磊,等.经颅多普勒、Rotterdam CT评分联合颅内压检测在重症颅脑损伤患者预后判断中的应用[J].临床神经外科杂志, 2022, 19(3): 327-332. DOI: 10.3969/j.issn.1672-7770.2022.03.017.
[12]
Gao Y, Liao LP, Chen P, et al. Application effect for a care bundle in optimizing nursing of patients with severe craniocerebral injury[J]. World J Clin Cases, 2021, 9(36): 11265-11275. DOI: 10.12998/wjcc.v9.i36.11265.
[13]
徐新,尚峰,曲鑫,等.创伤性脑损伤诱发的凝血功能障碍研究进展[J].中国现代神经疾病杂志, 2020, 20(8): 674-681. DOI: 10.3969/j.issn.1672-6731.2020.08.003.
[14]
徐兰娟,李成建,刘静,等.颅脑损伤患者伤后早期颅内血肿进展的危险因素分析[J].中华神经医学杂志, 2022, 21(4): 392-396. DOI: 10.3760/cma.j.cn115354-20211013-00655.
[15]
黄俊强,熊元元,李威,等.外伤性脑梗死与凝血功能障碍的关系及其对中、重度颅脑损伤患者预后的影响[J].中国临床神经外科杂志, 2014, 19(7): 397-399. DOI: 10.13798/j.issn.1009-q153X.2014.07.005.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[5] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[6] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[7] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[8] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[9] 关小玲, 周文营, 陈洪平. PTAAR在乙肝相关慢加急性肝衰竭患者短期预后中的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 841-845.
[10] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[11] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[12] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[13] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[14] 郭曌蓉, 王歆光, 刘毅强, 何英剑, 王立泽, 杨飏, 汪星, 曹威, 谷重山, 范铁, 李金锋, 范照青. 不同亚型乳腺叶状肿瘤的临床病理特征及预后危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 524-532.
[15] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
阅读次数
全文


摘要