切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 22 -27. doi: 10.3877/cma.j.issn.2095-9141.2024.01.004

临床研究

基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证
刘彪1,(), 巍山1, 关永胜1   
  1. 1. 234200 安徽宿州,安徽省第二人民医院灵璧医院影像科
  • 收稿日期:2023-03-13 出版日期:2024-02-15
  • 通信作者: 刘彪

Construction and validation of prognosis prediction model of traumatic brain injury based on Rotterdam CT score and coagulation function index

Biao Liu1,(), Shan Wei1, Yongsheng Guan1   

  1. 1. Department of Imaging, Lingbi Hospital, the Second People's Hospital of Anhui Province, Suzhou 234200, China
  • Received:2023-03-13 Published:2024-02-15
  • Corresponding author: Biao Liu
引用本文:

刘彪, 巍山, 关永胜. 基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 22-27.

Biao Liu, Shan Wei, Yongsheng Guan. Construction and validation of prognosis prediction model of traumatic brain injury based on Rotterdam CT score and coagulation function index[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(01): 22-27.

目的

探究基于鹿特丹(Rotterdam)CT评分、凝血功能指标的创伤性颅脑损伤(TBI)预后预测模型的构建与验证。

方法

选取安徽省第二人民医院灵璧医院神经外科自2020年1月至2022年1月收治的108例TBI患者为研究对象,所有患者入院24 h内均行CT影像检查与鹿特丹(Rotterdam)CT评分,同时予以凝血功能指标检测,根据治疗后6个月GOS评分将患者分为预后良好组(4~5分)和预后不良组(1~3分),采用二元Logistic回归分析筛选TBI患者预后的独立影响因素,并基于Rotterdam CT评分、凝血功能指标[凝血酶原时间(PT)、活化部分凝血活酶时间(APTT)、D-二聚体(D-D)]构建TBI预后的预测模型,建立受试者工作特征(ROC)曲线评估模型的预测效能。同时收集我院2019年1~12月收治的46例TBI患者的临床资料作为验证集,验证预测模型的准确性。

结果

108例患者中,预后良好组73例,预后不良组35例。预后不良组患者病情重型、合并低血氧、Rotterdam CT评分和凝血功能指标(PT、APTT、D-D)均高于预后良好组,差异均有统计学意义(P<0.05)。Logistic回归分析显示病情、Rotterdam CT评分、PT、D-D是TBI患者预后不良的独立影响因素(P<0.05)。TBI预后不良预测模型Y=3.078×Rotterdam评分CT评分-0.847×PT+1.211×D-D-1.672×病情严重程度-3.195。该预测模型预测预后不良的敏感度为0.886,特异度为0.836,约登指数为0.722,界值为0.262,曲线下面积为0.937。采用Hanley & McNeil法对预测模型与验证曲线比较检验发现,2个模型ROC曲线的AUC比较差异无统计学意义(P<0.05)。

结论

对于TBI患者,采用基于Rotterdam CT评分、凝血功能指标的预测模型有较好准确性,值得推广。

Objective

To explore the construction and validation of a prediction model for the prognosis of traumatic brain injury (TBI) based on Rotterdam CT score and coagulation function indicators.

Methods

A total of 108 TBI patients admitted to Neurosurgery Department of Lingbi Hospital of the Second People's Hospital of Anhui Province from January 2020 to January 2022 were selected as the study objects. CT image examination and Rotterdam CT score were performed on all patients within 24 h of admission, and coagulation function index was also detected. Based on the GOS score at 6 months after treatment, patients were divided into a good prognosis group (4-5 score) and a poor prognosis group (1-3 score). Binary Logistic regression analysis was used to screen the independent factors influencing the prognosis of TBI patients, and a prediction model of TBI prognosis was constructed based on Rotterdam CT score and coagulation function index [prothrombin time (PT), activated partial thromboplastin time (APTT), D-dimer (D-D)]. Receiver operating characteristic (ROC) curve was established to evaluate the predictive efficiency of the model. At the same time, the clinical data of 46 TBI patients admitted to our hospital from January to December 2019 were collected as a validation set to verify the accuracy of the prediction model.

Results

Among 108 patients, there were 73 patients in the good prognosis group and 35 patients in the poor prognosis group. The severity of the disease, combined hypoxemia, Rotterdam CT score, and coagulation function indicators (PT, APTT, D-D) in the poor prognosis group were higher than those in the good prognosis group, with statistical significance (P<0.05). Logistic regression analysis showed that disease condition, Rotterdam CT score, PT, and D-D were independent influencing factors for poor prognosis in TBI patients (P<0.05). The predictive model for poor prognosis of TBI is Y=3.078×Rotterdam score CT score-0.847×PT+1.211×D-1.672×severity severity of the disease-3.195. The prediction model predicted poor prognosis with 0.886 sensitivity, 0.836 specificity, 0.722 Jorden index, 0.262 cut-off value and 0.937 area under curve. The Hanley&McNeil method was used to compare the predictive model and the validation curve, and it was found that there was no statistically significant difference in the AUC comparison of the ROC curves between the two models (P<0.05).

Conclusion

For patients with TBI, the prediction model based on Rotterdam CT score and coagulation function has good accuracy and is worthy of promotion.

表1 2组患者的临床资料比较
Tab.1 Comparison of clinical data between the two groups
表2 2组患者的Rotterdam CT评分、凝血功能指标比较(±s
Tab.2 Comparison of Rotterdam CT score and coagulation function between the two groups (Mean±SD)
表3 TBI患者预后不良的影响因素分析
Tab.3 Analysis of adverse prognostic factors in patients with TBI
图1 预测模型预测预后不良的受试者工作特征曲线
Fig.1 Receiver operating characteristic curve for predicting poor prognosis by the predictive model
表4 TBI患者预后不良的预测模型构建
Tab.4 Construction of prediction model for poor prognosis of TBI patients
图2 验证模型预测预后不良的受试者工作特征曲线
Fig.2 Receiver operating characteristic curve for predicting poor prognosis by the validation model
[1]
王绅,徐旭旭,王如海.血小板-淋巴细胞比值对颅脑损伤患者6个月预后的预测价值[J].中华神经创伤外科电子杂志, 2022, 8(3): 150-154. DOI: 10.3877/cma.j.issn.2095-9141.2022.03.004.
[2]
Liu M, Zhang Q, Zhang J, et al. Clinical study on diagnosis of neonatal craniocerebral injury by b-mode ultrasonography[J]. Panminerva Med, 2022, 64(2): 299-300. DOI: 10.23736/s0031-0808.20.04225-1.
[3]
吉沥. GOS评分在动脉瘤性蛛网膜下腔出血患者预后评估中的作用及其危险因素分析[J].空军医学杂志, 2019, 35(6): 503-505, 518. DOI: 10.3969/j.issn.2095-3402.2019.06.013.
[4]
汪静静,孟庆宁,孙艳秋.鹿特丹CT评分用于评估颅脑损伤患者预后[J].中国介入影像与治疗学, 2022, 19(1): 36-39. DOI: 10.13929/j.issn.1672-8475.2022.01.008.
[5]
游承燕.创伤性脑损伤后凝血功能障碍机制及预后的研究进展[J].重庆医学, 2021, 50(18): 3210-3214. DOI: 10.3969/j.issn.1671-8348.2021.18.033.
[6]
中国神经科学学会神经损伤与修复分会.脑损伤神经功能损害与修复专家共识[J].中华神经创伤外科电子杂志, 2016, 2(2): 100-104. DOI: 10.3877/cma.j.issn.2095-9141.2016.02.010.
[7]
中华医学会神经外科学分会,中国神经外科重症管理协作组.中国重型颅脑创伤早期康复管理专家共识(2017)[J].中华医学杂志, 2017, 97(21): 1615-1623. DOI: 10.3760/cma.j.issn.0376-2491.2017.21.006.
[8]
梁世行,刘成辉,付剑,等. S100蛋白水平联合Rotterdam-CT评分、GCS评分在TBI病情和预后不良评估中的价值[J].卒中与神经疾病, 2022, 29(2): 155-159. DOI: 10.3969/j.issn.1007-0478.2022.02.011.
[9]
Heath Jeffery RC, Dobes J, Chen FK. Eye injuries: understanding ocular trauma[J]. Aust J Gen Pract, 2022, 51(7): 476-482. DOI: 10.31128/ajgp-03-21-5921.
[10]
Ni Y, Wu G, Wu W, et al. Study of compound sanqi nanoparticles for local infection of hydrocephalus patients after neurosurgery medium craniocerebral injury[J]. Cell Mol Biol (Noisy-le-grand), 2022, 68(3): 418-427. DOI: 10.14715/cmb/2022.68.3.46.
[11]
范家权,杨建业,顾磊,等.经颅多普勒、Rotterdam CT评分联合颅内压检测在重症颅脑损伤患者预后判断中的应用[J].临床神经外科杂志, 2022, 19(3): 327-332. DOI: 10.3969/j.issn.1672-7770.2022.03.017.
[12]
Gao Y, Liao LP, Chen P, et al. Application effect for a care bundle in optimizing nursing of patients with severe craniocerebral injury[J]. World J Clin Cases, 2021, 9(36): 11265-11275. DOI: 10.12998/wjcc.v9.i36.11265.
[13]
徐新,尚峰,曲鑫,等.创伤性脑损伤诱发的凝血功能障碍研究进展[J].中国现代神经疾病杂志, 2020, 20(8): 674-681. DOI: 10.3969/j.issn.1672-6731.2020.08.003.
[14]
徐兰娟,李成建,刘静,等.颅脑损伤患者伤后早期颅内血肿进展的危险因素分析[J].中华神经医学杂志, 2022, 21(4): 392-396. DOI: 10.3760/cma.j.cn115354-20211013-00655.
[15]
黄俊强,熊元元,李威,等.外伤性脑梗死与凝血功能障碍的关系及其对中、重度颅脑损伤患者预后的影响[J].中国临床神经外科杂志, 2014, 19(7): 397-399. DOI: 10.13798/j.issn.1009-q153X.2014.07.005.
[1] 丁关棣, 黄云, 曹震, 刘刚. 胃癌根治术后感染性并发症预测:基于真实世界数据的Nomogram模型开发与验证[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 261-266.
[2] 李娇娇, 张军, 徐顺. 全程新辅助治疗联合全直肠系膜切除术对局部进展期直肠癌预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 283-286.
[3] 张阳, 纽燕娜, 常丽蓉, 唐国华, 赵萍. ERAS理念下肝棘球蚴病术后并发症风险预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 287-290.
[4] 王东阳, 林琳, 娄熙彬. SII对局部进展期胃癌nCRT+腹腔镜胃癌根治术后并发症及预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 315-318.
[5] 聂彬, 赵铁军, 于云宝, 李欢, 谢林峻. 单孔加一孔腹腔镜手术与传统腹腔镜手术治疗乙状结肠癌的疗效与分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 330-333.
[6] 颜晓敏, 崔嵘嵘. 23例乳腺佩吉特病的经验交流[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 353-354.
[7] 刘政宏, 王凤力, 吉亚君, 高佳. 胃癌中ELK3蛋白的表达与临床病理特征和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 155-159.
[8] 张琳, 李婷. CRIP1在胃癌中的表达及与临床病理指标和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 171-175.
[9] 陈显育, 曾谣, 莫钊鸿, 翟航, 张广权, 钟造茂, 陈署贤. 生物信息学分析CETP基因在肝癌中表达及其对预后和免疫的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 214-219.
[10] 胡欣芫, 杨智義, 赵成俊, 张秋雨, 张挽乾, 潘佰猛, 张灵强. 急性胰腺炎评分系统预测病情严重程度的研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 239-243.
[11] 王礼光, 严庆, 廖珊, 符荣党, 陈焕伟. 微血管侵犯及手术切缘对肝细胞癌患者术后生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 151-157.
[12] 马振威, 朱博, 刘赋斌, 邓正栋, 王剑明. 血小板和淋巴细胞比值联合CA19-9在胆囊癌术后患者预后评估中的价值[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 163-168.
[13] 夏辉, 戴斌, 冉君, 王威, 龚昭, 周程. DEP结构域蛋白1B在肝细胞癌中的表达及功能[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 205-213.
[14] 陈憩, 顾于蓓. 不同亚型上消化道克罗恩病的临床特点和预后差异研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 121-127.
[15] 朱菡, 卓士超, 吴迪, 朱雅楠, 韩佳欣. 术前血浆纤维蛋白原、血脂水平及MMR表达与结直肠癌病理特点及预后的相关性[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 141-145.
阅读次数
全文


摘要