切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (04) : 204 -208. doi: 10.3877/cma.j.issn.2095-9141.2022.04.003

基础研究

RHO/ROCK信号通路对创伤性脑损伤后颅内神经系统微环境的影响
崔刚1, 肖友朝2, 王欢2, 田璧铭1, 王莹1, 段虎斌2,()   
  1. 1. 250000 济南,山东中医药大学附属医院神经外科
    2. 030001 太原,山西医科大学第一医院神经外科
  • 收稿日期:2022-06-28 出版日期:2022-08-15
  • 通信作者: 段虎斌
  • 基金资助:
    国家自然科学基金(30600637); 中国博士后科学基金面上项目(2014M561207); 中国博士后科学基金(2019T120195)

Effects of RHO/ROCK signaling pathway on the microenvironment of nervous system after traumatic brain injury in rats

Gang Cui1, Youchao Xiao2, Huan Wang2, Biming Tian1, Ying Wang1, Hubin Duan2,()   

  1. 1. Department of Neurosurgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan 250000, China
    2. Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2022-06-28 Published:2022-08-15
  • Corresponding author: Hubin Duan
引用本文:

崔刚, 肖友朝, 王欢, 田璧铭, 王莹, 段虎斌. RHO/ROCK信号通路对创伤性脑损伤后颅内神经系统微环境的影响[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 204-208.

Gang Cui, Youchao Xiao, Huan Wang, Biming Tian, Ying Wang, Hubin Duan. Effects of RHO/ROCK signaling pathway on the microenvironment of nervous system after traumatic brain injury in rats[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(04): 204-208.

目的

探讨创伤性脑损伤(TBI)后颅内RHO/ROCK信号通路对神经系统微环境的影响。

方法

选用健康SD大鼠195只,采用击锤、撞杆自由落体原理致伤制作脑创伤大鼠模型,作为创伤组;伤后给予部分大鼠尾静脉注射RHO/ROCK信号通路阻断剂,作为干预组;选用健康大鼠作为对照组。创伤组和干预组分别于0.5、6、12、24、48、72 h处死大鼠,每个时间点15只;对照组选取15只。各时间点取大鼠创伤区及对照组大鼠脑组织测定ROCKⅡ、NOGO-A、NF-κB蛋白的含量并进行统计学分析。

结果

创伤组大鼠脑创伤区及周围组织中ROCKⅡ、NOGO-A、NF-κB含量较对照组增多,且其在脑内的含量与时间有相关性。给予RHO/ROCK信号通路阻断剂后,干预组各时间点的ROCKⅡ、NOGO-A、NF-κB蛋白含量明显减少,差异均具有统计学意义(P<0.05)。

结论

RHO/ROCK信号通路可改变TBI后大鼠脑组织内神经系统微环境。

Objective

To investigate the effect of RHO/ROCK signal pathway on nervous system microenvironment after traumatic brain injury (TBI) in rats.

Methods

One hundred and ninety-five healthy SD rats were selected to make a brain trauma rat model by using the principle of hammer and rod free fall as the trauma group; After injury, some rats were injected with RHO/ROCK signal pathway blocker through caudal vein as the intervention group; Healthy rats were selected as the control group. The rats in the trauma group and the intervention group were killed at 0.5, 6, 12, 24, 48 and 72 h respectively, with 15 rats per time point; 15 rats were selected as control group. At each time point, the brain tissues of rats in the traumatic group and the control group was taken to measure the protein content of ROCK Ⅱ, NOGO-A and NF-κB.

Results

After TBI, the content of ROCK II, NOGO-A and NF-κB in brain trauma area and surrounding tissue increased in the traumatic group compared with the control group, and its content in the brain has a correlation with the time. After the administration of RHO/ROCK signaling pathway blocker, the protein content of ROCK Ⅱ, NOGO-A and NF-κB was reduced in the intervention group at each time point, and the difference were statistically significant (P<0.05).

Conclusion

RHO/ROCK signaling pathway can change the microenvironment of nervous system in rat brain after TBI.

图1 创伤标本制作过程示意图A:撞击骨窗图示(直径5 mm);B:自由落体致伤原理图示;C:致伤完成缝合伤口图示
表1 3组大鼠脑组织ROCKⅡ蛋白含量比较
表2 3组大鼠脑组织NOGO-A蛋白含量比较
表3 3组大鼠脑组织NF-κB蛋白含量比较
[1]
Tarapore PE, Vassar MJ, Cooper S, et al. Establishing a traumatic brain injury program of care: benchmarking outcomes after institutional adoption of evidence-based guidelines[J]. J Neurotrauma, 2016, 33(22): 2026-2033.
[2]
Majdan M, Rusnák M, Bražinová A, et al. Severity, causes and outcomes of traumatic brain injuries occurring at different locations: implications for prevention and public health[J]. Cent Eur J Public Health, 2015, 23(2): 142-148.
[3]
侯婧瑛,于萌蕾,郭天柱,等.缺氧预处理激活HIF-1α/MALAT1/VEGFA通路促进骨髓间充质干细胞生存和血管再生[J].中国组织工程研究, 2021, 25(7): 985-990.
[4]
张妮,陈兰英,李雪亮,等.炎症诱导缺血缺氧环境下骨髓间充质干细胞的活性[J].中国组织工程研究, 2018, 22(33): 5259-5267.
[5]
Dong MM, Yi TH. Stem cell and peripheral nerve injury and repair[J]. Facial Plast Surg, 2010, 26(5): 421-427.
[6]
Sayad-Fathi S, Nasiri E, Zaminy A. Advances in stem cell treatment for sciatic nerve injury[J]. Expert Opin Biol Ther, 2019, 19(4): 301-311.
[7]
Wang Y, Pan J, Wang D, et al. The use of stem cells in neural regeneration: a review of current opinion[J]. Curr Stem Cell Res Ther, 2018, 13(7): 608-617.
[8]
Sebben AD, Lichtenfels M, da Silva JL. Peripheral nerve regeneration: cell therapy and neurotrophic factors[J]. Rev Bras Ortop, 2015, 46(6): 643-649.
[9]
Fujimura M, Usuki F, Kawamura M. Inhibition of the Rho/ROCK pathway prevents neuronal degeneration in vitro and in vivo following methylmercury exposure[J]. Toxicol Appl Pharmacol, 2011, 250(1): 1-9.
[10]
Cheng R, Shao MY, Yang H, et al. The effect of lysophosphatidic acid and Rho-associated kinase patterning on adhesion of dental pulp cells[J]. Int Endod J, 2011, 44(1): 2-8.
[11]
Haydont V, Bourgier C, Vozenin-Brotons MC. Rho/ROCK pathway as a molecular target for modulation of intestinal radiation-induced toxicity[J]. Br J Radiol, 2007, 80 Spec No 1: S32-S40.
[12]
Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity[J]. Cytoskeleton (Hoboken), 2010, 67(9): 545-554.
[13]
Shi J, Wei L. Rho kinase in the regulation of cell death and survival[J]. Arch Immunol Ther Exp (Warsz), 2007, 55(2): 61-75.
[14]
Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1[J]. Nature, 2000, 403(6768): 434-439.
[15]
Liu Y, Liu Z, Wang Y, et al. Investigation of the performance of PEG-PEI/ROCK-II-siRNA complexes for Alzheimer's disease in vitro[J]. Brain Res, 2013, 1490: 43-51.
[16]
Raad M, El Tal T, Gul R, et al. Neuroproteomics approach and neurosystems biology analysis: ROCK inhibitors as promising therapeutic targets in neurodegeneration and neurotrauma[J]. Electrophoresis, 2012, 33(24): 3659-3668.
[17]
Tan HB, Zhong YS, Cheng Y, et al. Rho/ROCK pathway and neural regeneration: a potential therapeutic target for central nervous system and optic nerve damage[J]. Int J Ophthalmol, 2011, 4(6): 652-657.
[18]
熊莉娜,熊枝繁,涂艳.核转录因子-kB、表皮生长因子受体在食管鳞状细胞癌组织中的表达及意义[J].实用医学杂志, 2010, 26(16): 2941-2942.
[1] 周志鸿, 彭立辉. 间充质干细胞来源的细胞外囊泡治疗创伤性脑损伤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 251-255.
[2] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[3] 王建鹏, 廖勇仕, 丁文聪, 李冲, 陈锐. lncRNA在创伤性脑损伤中的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 365-370.
[4] 崔刚, 王德亮, 付茂武, 田璧铭, 王莹, 段虎斌. 创伤性脑损伤后鼠脑内RHO/ROCK信号通路与神经炎症反应及病理性损伤关系的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 324-328.
[5] 傅世龙, 王国锋, 侯鹏伟, 袁邦清, 魏梁锋, 王守森. 颅脑创伤患者术后再次开颅清除对侧血肿的影响因素分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 287-292.
[6] 程俊凯, 罗耀文, 李娟, 张磊, 杨淑涵, 王彦刚. 重复经颅磁刺激上调DJ-1表达改善小鼠创伤性脑损伤后功能障碍的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 261-268.
[7] 王鸿, 高俊宏, 卢青, 刘进仁, 范小琳, 李亮, 马宁, 王琪. 基于CiteSpace的创伤性脑损伤研究文献计量学分析[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 141-149.
[8] 齐洪武, 刘岩松, 曾维俊, 张立钊, 郭洪均, 刘清石. 儿童创伤性脑损伤的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 121-124.
[9] 毕万达, 刘阳珷玥, 戴双双. 载脂蛋白E在创伤性脑损伤中作用及机制的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 51-55.
[10] 余鹏飞, 麦兴进, 符树强, 苏保寿, 吴益敏, 喻闻庆. 血清sTREM-1、IL-12及IL-33水平对创伤性脑损伤严重程度和预后评估的价值[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 18-22.
[11] 崔刚, 王欢, 付茂武, 王莹, 段虎斌. NOGO-A在创伤性脑损伤后大鼠脑组织含量表达及干预实验研究[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 6-10.
[12] 解东成, 陈红伟, 王圣杰, 郭小川. 创伤性脑损伤后不同程度脑积水患者脑室-腹腔分流术临床疗效分析[J]. 中华神经创伤外科电子杂志, 2021, 07(02): 92-95.
[13] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[14] 季菊花, 徐明, 洪菲, 宋磊. 枸橼酸咖啡因联合苯巴比妥对早产儿脑损伤患儿NF-κB、TLR2的影响[J]. 中华临床医师杂志(电子版), 2022, 16(02): 141-145.
[15] 吴敏, 潘鑫, 王忻, 邱晨, 陈伟, 顾慧. 镇江市院前救治的创伤性脑损伤患者特征分析[J]. 中华卫生应急电子杂志, 2022, 08(01): 18-21.
阅读次数
全文


摘要