切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (06) : 365 -370. doi: 10.3877/cma.j.issn.2095-9141.2022.06.010

综述

lncRNA在创伤性脑损伤中的研究进展
王建鹏1, 廖勇仕2, 丁文聪2, 李冲2, 陈锐2,()   
  1. 1. 611830 成都,都江堰市人民医院神经外科
    2. 421002 湖南衡阳,南华大学附属南华医院神经外科
  • 收稿日期:2022-05-11 出版日期:2022-12-15
  • 通信作者: 陈锐
  • 基金资助:
    湖南省自然科学基金科卫联合项目(2019JJ80056)

Research progress of lncRNA in traumatic brain injury

Jianpeng Wang1, Yongshi Liao2, Wencong Ding2, Chong Li2, Rui Chen2,()   

  1. 1. Department of Neurosurgery, The People’s Hospital of DuJiangYan, Chengdu 611830, China
    2. Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
  • Received:2022-05-11 Published:2022-12-15
  • Corresponding author: Rui Chen
引用本文:

王建鹏, 廖勇仕, 丁文聪, 李冲, 陈锐. lncRNA在创伤性脑损伤中的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 365-370.

Jianpeng Wang, Yongshi Liao, Wencong Ding, Chong Li, Rui Chen. Research progress of lncRNA in traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(06): 365-370.

创伤性脑损伤(TBI)在全球具有较高的发病率、致残率及死亡率,因其病理机制的复杂性、多层次性及异质性等,常规临床治疗效果欠佳,给个人、家庭和社会带来巨大的负担。长链非编码RNA(lncRNA)是一类长度>200 nt的RNA,与TBI中各种信号转导、炎症通路、免疫反应、离子通道及细胞周期的发生发展息息相关。本文主要综述lncRNA通过炎症通路及免疫相关炎症在TBI中所起的作用,以期通过调控lncRNA的表达水平为TBI患者的治疗带来新的契机。

Traumatic brain injury (TBI) has a very high morbidity, disability and mortality rate in global. Due to the complexity, multi-level, heterogeneity and other factors of its pathological mechanism, poor effect of conventional clinical treatment brings a huge burden to individuals, families and society. Long noncoding RNA (lncRNA) is a type of RNA with a length of more than 200 nt, which is closely related to the occurrence and development of various signal transduction, inflammation pathways, immune response, ion channels and cell cycle in TBI. This article mainly reviews the role of lncRNA in TBI through inflammatory pathway and immune-related inflammation in TBI, in order to bring new opportunities for the treatment of TBI patients by regulating the expression level of lncRNA.

图1 创伤性颅脑损伤后颅内外表现示意图
图2 创伤性颅脑损伤中lncRNA下游分子及相关信号通路
[1]
Hiebert JB, Shen Q, Thimmesch AR, et al. Traumatic brain injury and mitochondrial dysfunction[J]. Am J Med Sci, 2015, 350(2): 132-138.
[2]
Gaddam SS, Buell T, Robertson CS. Systemic manifestations of traumatic brain injury[J]. Handb Clin Neurol, 2015, 127: 205-218.
[3]
Dixon KJ. Pathophysiology of traumatic brain injury[J]. Phys Med Rehabil Clin N Am, 2017, 28(2): 215-225.
[4]
中华人民共和国国家统计局. 中国统计年鉴2018[M]. 北京: 中国统计出版社, 2018.
[5]
Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research[J]. Lancet Neurol, 2017, 16(12): 987-1048.
[6]
Gao G, Wu X, Feng J, et al. Clinical characteristics and outcomes in patients with traumatic brain injury in China: a prospective, multicentre, longitudinal, observational study[J]. Lancet Neurol, 2020, 19(8): 670-677.
[7]
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295.
[8]
Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury[J]. Curr Neuropharmacol, 2018, 16(8): 1224-1238.
[9]
Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury[J]. Neuropharmacology, 2019, 145(Pt B): 230-246.
[10]
陈邱明,袁邦清,吴贤群, 等. 开放性颅脑损伤早期临床救治策略[J]. 中华神经创伤外科电子杂志, 2021, 7(4): 207-210.
[11]
Huang X, Zhang W, Shao Z. Association between long non-coding RNA polymorphisms and cancer risk: a meta-analysis[J]. Biosci Rep, 2018, 38(4): BSR20180365.
[12]
An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489(7414): 57-74.
[13]
Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development[J]. Nat Rev Genet, 2014, 15(1): 7-21.
[14]
Wang Z, Li X. The role of noncoding RNA in hepatocellular carcinoma[J]. Gland Surg, 2013, 2(1): 25-29.
[15]
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs[J]. RNA Biol, 2013, 10(6): 925-933.
[16]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4): 629-641.
[17]
Beermann J, Piccoli MT, Viereck J, et al. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches[J]. Physiol Rev, 2016, 96(4): 1297-1325.
[18]
Matsui M, Corey DR. Non-coding RNAs as drug targets[J]. Nat Rev Drug Discov, 2017, 16(3): 167-179.
[19]
Khorkova O, Hsiao J, Wahlestedt C. Basic biology and therapeutic implications of lncRNA[J]. Adv Drug Deliv Rev, 2015, 87: 15-24.
[20]
Zhang L, Wang H. Long non-coding RNA in CNS injuries: a new target for therapeutic intervention[J]. Mol Ther Nucleic Acids, 2019, 17: 754-766.
[21]
Wu GC, Pan HF, Leng RX, et al. Emerging role of long noncoding RNAs in autoimmune diseases[J]. Autoimmun Rev, 2015, 14(9): 798-805.
[22]
D'Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, et al. Brain dendritic cells: biology and pathology[J]. Acta Neuropathol, 2012, 124(5): 599-614.
[23]
Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation[J]. Science, 2014, 344(6181): 310-313.
[24]
Ranzani V, Rossetti G, Panzeri I, et al. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4[J]. Nat Immunol, 2015, 16(3): 318-325.
[25]
Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 96-118.
[26]
Zhang R, Xia Y, Wang Z, et al. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer[J]. Biochem Biophys Res Commun, 2017, 490(2): 406-414.
[27]
Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer[J]. Oncogene, 2003, 22(39): 8031-8041.
[28]
Patel NA, Moss LD, Lee JY, et al. Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury[J]. J Neuroinflammation, 2018, 15(1): 204.
[29]
Stewart IB, McKenzie DC. The human spleen during physiological stress[J]. Sports Med, 2002, 32(6): 361-369.
[30]
Klec C, Prinz F, Pichler M. Involvement of the long noncoding RNA NEAT1 in carcinogenesis[J]. Mol Oncol, 2019, 13(1): 46-60.
[31]
Zhong J, Jiang L, Huang Z, et al. The long non-coding RNA Neat1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice[J]. Brain Behav Immun, 2017, 65: 183-194.
[32]
Xia LX, Ke C, Lu JM. NEAT1 contributes to neuropathic pain development through targeting miR-381/HMGB1 axis in CCI rat models[J]. J Cell Physiol, 2018, 233(9): 7103-7111.
[33]
Hirose T, Virnicchi G, Tanigawa A, et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies[J]. Mol Biol Cell, 2014, 25(1): 169-183.
[34]
Yi H, Peng R, Zhang LY, et al. LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy[J]. Cell Death Dis, 2017, 8(2): e2583.
[35]
Xue Z, Zhang Z, Liu H, et al. lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation[J]. Cell Death Differ, 2019, 26(1): 130-145.
[36]
Ying D, Zhou X, Ruan Y, et al. LncRNA Gm4419 induces cell apoptosis in hepatic ischemia-reperfusion injury via regulating the miR-455-SOX6 axis[J]. Biochem Cell Biol, 2020, 98(4): 474-483.
[37]
Schneider C, King RM, Philipson L. Genes specifically expressed at growth arrest of mammalian cells[J]. Cell, 1988, 54(6): 787-793.
[38]
Zhang X, Liu F, Wang Q, et al. Overexpressed microRNA-506 and microRNA-124 alleviate H2O2-induced human cardiomyocyte dysfunction by targeting krüppel-like factor 4/5[J]. Mol Med Rep, 2017, 16(4): 5363-5369.
[39]
Xu S, Zhu W, Shao M, et al. Ecto-5'-nucleotidase (CD73) attenuates inflammation after spinal cord injury by promoting macrophages/microglia M2 polarization in mice[J]. J Neuroinflammation, 2018, 15(1): 155.
[40]
Mondal T, Subhash S, Vaid R, et al. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures[J]. Nat Commun, 2015, 6: 7743.
[41]
Jing Y, Yang DX, Wang W, et al. Aloin protects against blood-brain barrier damage after traumatic brain injury in mice[J]. Neurosci Bull, 2020, 36(6): 625-638.
[42]
Bedi SS, Aertker BM, Liao GP, et al. Therapeutic time window of multipotent adult progenitor therapy after traumatic brain injury[J]. J Neuroinflammation, 2018, 15(1): 84.
[43]
Shi J, Dong B, Cao J, et al. Long non-coding RNA in glioma: signaling pathways[J]. Oncotarget, 2017, 8(16): 27582-27592.
[44]
Zhang P, Shi L, Song L, et al. LncRNA CRNDE and lncRNA SNHG7 are promising biomarkers for prognosis in synchronous colorectal liver metastasis following hepatectomy[J]. Cancer Manag Res, 2020, 12: 1681-1692.
[45]
Gao H, Song X, Kang T, et al. Long noncoding RNA CRNDE functions as a competing endogenous RNA to promote metastasis and oxaliplatin resistance by sponging miR-136 in colorectal cancer[J]. Onco Targets Ther, 2017, 10: 205-216.
[46]
Stover JF, Schöning B, Beyer TF, et al. Temporal profile of cerebrospinal fluid glutamate, interleukin-6, and tumor necrosis factor-alpha in relation to brain edema and contusion following controlled cortical impact injury in rats[J]. Neurosci Lett, 2000, 288(1): 25-28.
[47]
Rothwell N. Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential[J]. Brain Behav Immun, 2003, 17(3): 152-157.
[48]
Kernie SG, Erwin TM, Parada LF. Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice[J]. J Neurosci Res, 2001, 66(3): 317-326.
[49]
Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs[J]. Cell, 2007, 129(7): 1311-1323.
[50]
Cheng S, Zhang Y, Chen S, et al. LncRNA HOTAIR participates in microglia activation and inflammatory factor release by regulating the ubiquitination of MYD88 in traumatic brain injury[J]. J Mol Neurosci, 2021, 71(1): 169-177.
[51]
Zhang HS, Li H, Zhang DD, et al. Inhibition of myeloid differentiation factor 88(MyD88) by ST2825 provides neuroprotection after experimental traumatic brain injury in mice[J]. Brain Res, 2016, 1643: 130-139.
[52]
Dong D, Mu Z, Zhao C, et al. ZFAS1: a novel tumor-related long non-coding RNA[J]. Cancer Cell Int, 2018, 18: 125.
[53]
Chen Y, Wei Z, Liu J, et al. Long noncoding RNA ZFAS1 aggravates spinal cord injury by binding with miR-1953 and regulating the PTEN/PI3K/AKT pathway[J]. Neurochem Int, 2021, 147: 104977.
[54]
彭建华,庞金伟,吴越, 等. 长链非编码RNA F19对小鼠创伤性脑损伤后继发性脑损伤的影响[J]. 中华创伤杂志, 2019, 35(3): 267-273.
[55]
Balu R. Inflammation and immune system activation after traumatic brain injury[J]. Curr Neurol Neurosci Rep, 2014, 14(10): 484.
[56]
Viet QHN, Nguyen VQ, Le Hoang DM, et al. Ability to regulate immunity of mesenchymal stem cells in the treatment of traumatic brain injury[J]. Neurol Sci, 2022, 43(3): 2157-2164.
[57]
丁华,张磊,袁即山, 等. 外泌体的神经免疫调节功能在脊髓损伤修复中作用的研究进展[J]. 中华神经创伤外科电子杂志, 2021, 7(5): 305-309.
[58]
Nizamutdinov D, Shapiro LA. Overview of traumatic brain injury: an immunological context[J]. Brain Sci, 2017, 7(1): 11.
[59]
Tobin RP, Mukherjee S, Kain JM, et al. Traumatic brain injury causes selective, CD74-dependent peripheral lymphocyte activation that exacerbates neurodegeneration[J]. Acta Neuropathol Commun, 2014, 2: 143.
[1] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[2] 张博, 韩威, 郝少龙, 李泽乾, 纪智礼. 竞争内源性RNA在胰腺癌研究中的进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 213-216.
[3] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[4] 王秀清, 诸葛金科, 杨明星, 董文. ICIs治疗肺癌并发肺气肿致免疫相关性肺炎的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 400-402.
[5] 黄军杰, 王烈, 赵虎, 夏印, 张再重. lncRNA作为ceRNA参与婴幼儿血管瘤发生发展机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 360-366.
[6] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[7] 莫建涛, 杨沛泽, 曹瑞奇, 马清涌, 王铮, 仵正, 周灿灿. 基于生物信息学分析构建肝内胆管细胞癌患者铁死亡相关lncRNA预后模型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 185-189.
[8] 方蕊, 宋旭东. 非编码核糖核酸与白内障相关的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 94-98.
[9] 魏航, 赵明威, 曲进锋. 基于文本挖掘数据库干性年龄相关性黄斑变性免疫反应核心基因与关键通路的生物信息学分析[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 262-267.
[10] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[11] 崔刚, 王德亮, 付茂武, 田璧铭, 王莹, 段虎斌. 创伤性脑损伤后鼠脑内RHO/ROCK信号通路与神经炎症反应及病理性损伤关系的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 324-328.
[12] 傅世龙, 王国锋, 侯鹏伟, 袁邦清, 魏梁锋, 王守森. 颅脑创伤患者术后再次开颅清除对侧血肿的影响因素分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 287-292.
[13] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[14] 王健, 赵海剑, 孙静, 张晓雨, 陈柏羽. LncRNA SNHG4表达与结直肠癌预后的关系[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 139-144.
[15] 张慧锋, 张弸, 朱晓蔚, 于鸿. 外泌体长链非编码RNA在胃癌中的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 46-49.
阅读次数
全文


摘要