切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (04) : 196 -203. doi: 10.3877/cma.j.issn.2095-9141.2022.04.002

基础研究

叶酸通过NLRP3/ASC/Caspase-1信号通路对HT22细胞拟帕金森损伤作用的研究
姬丽娅1, 姬昂2, 狄政莉1, 熊婧1, 刘志勤1, 薛秀云1, 费晓炜2, 豆雅楠2, 王利2,()   
  1. 1. 710032 西安市第三医院神经内科
    2. 710032 西安,西京医院神经外科
  • 收稿日期:2022-06-28 出版日期:2022-08-15
  • 通信作者: 王利
  • 基金资助:
    西安市卫健委青年培育科研项目(2022qn02)

Effect of folic acid on Parkinson's like injury of HT22 cells through the NLRP3/ASC/Caspase-1 signaling pathway

Liya Ji1, Ang Ji2, Zhengli Di1, Jing Xiong1, Zhiqin Liu1, Xiuyun Xue1, Xiaowei Fei2, Yanan Dou2, Li Wang2,()   

  1. 1. Department of Neurology, Xi'an Third Hospital, Xi'an 710032, China
    2. Department of Neurosurgery, Xijing Hospital, Xi’an 710032, China
  • Received:2022-06-28 Published:2022-08-15
  • Corresponding author: Li Wang
引用本文:

姬丽娅, 姬昂, 狄政莉, 熊婧, 刘志勤, 薛秀云, 费晓炜, 豆雅楠, 王利. 叶酸通过NLRP3/ASC/Caspase-1信号通路对HT22细胞拟帕金森损伤作用的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 196-203.

Liya Ji, Ang Ji, Zhengli Di, Jing Xiong, Zhiqin Liu, Xiuyun Xue, Xiaowei Fei, Yanan Dou, Li Wang. Effect of folic acid on Parkinson's like injury of HT22 cells through the NLRP3/ASC/Caspase-1 signaling pathway[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(04): 196-203.

目的

探讨叶酸对小鼠HT22细胞拟帕金森(PD)损伤产生的影响。

方法

将小鼠HT22细胞作为研究对象,随机分为对照组、模型组、叶酸组及治疗组4组。采用CCK-8、LDH、TUNEL以及免疫荧光试验检测叶酸对MPP+诱导的细胞损伤的活性影响以及NOD样受体蛋白3(NLRP3)荧光表达的影响;采用Western免疫印迹和qPCR实验检测叶酸对MPP+诱导细胞损伤后NLRP3、凋亡相关微粒蛋白(ASC)、Caspase-1表达的影响;利用ELISA检测叶酸对MPP+诱导细胞损伤后白细胞介素(IL)-18和IL-1β表达的影响;最后采用Western免疫印迹检测NLRP3抑制剂CY-09对MPP+诱导细胞损伤后ASC、Caspase-1、IL-18和IL-1β表达的影响。

结果

MPP+诱导HT22细胞引起拟PD损伤,CCK-8、LDH、TUNEL实验检测结果显示叶酸可显著缓解损伤引起的细胞活性的降低和凋亡细胞的增加;免疫荧光试验检测结果显示叶酸可降低损伤后细胞中NLRP3荧光强度的升高;Western免疫印迹和qPCR试验检测结果显示叶酸可降低NLRP3、ASC、Caspase-1在蛋白水平和mRNA水平的升高;ELISA检测结果显示,叶酸治疗可显著缓解损伤后细胞内IL-18和IL-1β的分泌;最后采用Western免疫印迹检测显示CY-09可以阻断损伤后细胞内ASC、Caspase-1、IL-18和IL-1β蛋白水平的升高。

结论

叶酸通过降低IL-18和IL-1β表达保护MPP+致HT22细胞拟PD损伤,潜在的保护机制可能与NLRP3/ASC/Caspase-1信号通路密切相关。

Objective

To investigate the effect of folic acid on Parkinson's like injury in mouse HT22 cells.

Methods

Mouse HT22 cells were used as the study subjects, and were randomly divided into four groups: Control group, MPP+ group (Model group), Folic acid group and MPP+ + Folic acid (Treatment group). CCK-8, LDH, TUNEL and immunofluorescence assay were used to detect the effect of folic acid on cell viability and expression of NLRP3 induced by MPP+. The effects of folic acid on the expression of NLRP3, ASC and Caspase-1 after MPP+-induced cell injury were detected by Western blot and qPCR. ELISA was used to detect the effect of folic acid on the expression of interleukin (IL)-18 and IL-1β after MPP+-induced cell injury. Finally, Western blot was used to examine the expression of ASC, Caspase-1, IL-18 and IL-1β after CY-09 treatment.

Results

MPP+ can cause Parkinson’s like injury to HT22 cells. The results of CCK-8, LDH and TUNEL experiments showed folic acid can significantly alleviate the decrease of cell viability and the increase of apoptotic cells caused by injury. Immunofluorescence test showed that folic acid could reduce the increase of NLRP3 fluorescence intensity in injured cells. Western blot and qPCR test showed that folic acid decreased the increase of NLRP3, ASC and Caspase-1 in protein level and mRNA level. ELISA results showed that folic acid treatment significantly alleviated the secretion of intracellular IL-18 and IL-1β after injury. Finally, Western blot showed that CY-09 could block the increase of ASC, Caspase-1 and IL-18 and IL-1β protein levels in cells after injury.

Conclusion

Folic acid can cause Parkinson's like injury to HT22 cells by decreasing IL-18 and IL-1β expression and protecting MPP+, and the potential protective mechanism may be closely related to the NLRP3/ASC/Caspase-1 signaling pathway.

图1 叶酸对MPP+诱导的细胞损伤的活性影响A:CCK-8实验检测;与对照组比较,aP<0.05;与模型组比较,bP<0.05;B:LDH实验检测;与对照组比较,aP<0.05;与模型组比较,bP<0.05;C:TUNEL阳性细胞率,与对照组比较,aP<0.05;与模型组比较,bP<0.05;D:TUNEL实验检测
图2 叶酸对MPP+诱导细胞损伤后NLRP3荧光表达的影响A:NLRP3免疫荧光染色代表性图片;B:NLRP3荧光密度量化;与对照组比较,aP<0.05;与模型组比较,bP<0.05;NLRP3:NOD样受体蛋白3;MPP+:1-甲基-4-苯基吡啶
图3 Western blot检测叶酸对MPP+诱导细胞损伤后NLRP3、ASC、Caspase-1蛋白的表达NLRP3:NOD样受体蛋白3;MPP+:1-甲基-4-苯基吡啶;ASC:凋亡相关微粒蛋白
图4 叶酸对MPP+诱导细胞损伤后NLRP3、ASC、Caspase-1表达的影响A~C:Western blot检测结果量化(A:NLRP3蛋白;B:ASC蛋白;C:Caspase-1蛋白);D~F:qPCR检测(D:NLRP3 mRNA;E:ASC mRNA;F:Caspase-1 mRNA);与对照组比较,aP<0.05;与模型组比较,bP<0.05
图5 叶酸对MPP+诱导细胞损伤后炎症因子表达的影响A:叶酸对MPP+诱导细胞损伤后IL-18表达的影响;B:叶酸对MPP+诱导细胞损伤后IL-1β表达的影响;与对照组比较,aP<0.05;与模型组比较,bP<0.05
图6 CY-09对MPP+诱导细胞损伤后ASC、Caspase-1、IL-18和IL-1β表达的影响A:Western blot检测;B~E:Western blot结果的量化(B:ASC;C:Caspase-1;D:IL-18;E:IL-1β);与对照组比较,aP<0.05;与模型组比较,bP<0.05
[1]
Joshi N, Singh S. Updates on immunity and inflammation in Parkinson disease pathology[J]. J Neurosci Res, 2018, 96(3): 379-390.
[2]
Han X, Sun S, Sun Y, et al. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease[J]. Autophagy, 2019, 15(11): 1860-1881.
[3]
袁亮,陈立华.脑深部电刺激在新领域的临床应用进展[J].中华神经创伤外科电子杂志, 2016, 2(4): 235-240.
[4]
Ahmed S, Kwatra M, Ranjan Panda S, et al. Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease[J]. Brain Behav Immun, 2021, 91: 142-158.
[5]
Boelens Keun JT, Arnoldussen IA, Vriend C, et al. Dietary approaches to improve efficacy and control side effects of levodopa therapy in Parkinson's disease: a systematic review[J]. Adv Nutr, 2021, 12(6): 2265-2287.
[6]
Lei XW, Li Q, Zhang JZ, et al. The protective roles of folic acid in preventing diabetic retinopathy are potentially associated with suppressions on angiogenesis, inflammation, and oxidative stress[J]. Ophthalmic Res, 2019, 62(2): 80-92.
[7]
Mi S, Tang Y, Dari G, et al. Transcriptome sequencing analysis for the identification of stable lncRNAs associated with bovine staphylococcus aureus mastitis[J]. J Anim Sci Biotechnol, 2021, 12(1): 120.
[8]
Field MS, Stover PJ. Safety of folic acid[J]. Ann N Y Acad Sci, 2018, 1414(1): 59-71.
[9]
Liao X, Jiang Y, Dai Q, et al. Fluorofenidone attenuates renal fibrosis by inhibiting the mtROS-NLRP3 pathway in a murine model of folic acid nephropathy[J]. Biochem Biophys Res Commun, 2021, 534: 694-701.
[10]
Elsayed MS, Abu-Elsaad NM, Nader MA. The NLRP3 inhibitor dapansutrile attenuates folic acid induced nephrotoxicity via inhibiting inflammasome/caspase-1/IL axis and regulating autophagy/proliferation[J]. Life Sci, 2021, 285: 119974.
[11]
Srivastav S, Singh SK, Yadav AK, et al. Folic acid supplementation rescues anomalies associated with knockdown of parkin in dopaminergic and serotonergic neurons in drosophila model of Parkinson's disease[J]. Biochem Biophys Res Commun, 2015, 460(3): 780-785.
[12]
Srivastav S, Singh S, Yadav A, et al. Folic acid supplementation ameliorates oxidative stress, metabolic functions and developmental anomalies in a novel fly model of Parkinson's disease[J]. Neurochem Res, 2015, 40(7): 1350-1359.
[13]
陆宸宇,杨君,刘怡希,等.帕金森氏病关联miRNAs的功能和调控[J].中国临床药理学与治疗学, 2020, 25(7): 775-783.
[14]
Scherbaum R, Hartelt E, Kinkel M, et al. Parkinson's disease multimodal complex treatment improves motor symptoms, depression and quality of life[J]. J Neurol, 2020, 267(4): 954-965.
[15]
Haque ME, Akther M, Jakaria M, et al. Targeting the microglial NLRP3 inflammasome and its role in Parkinson's disease[J]. Mov Disord, 2020, 35(1): 20-33.
[16]
Broz P. Immunology: caspase target drives pyroptosis[J]. Nature, 2015, 526(7575): 642-643.
[17]
Tufekci KU, Ercan I, Isci KB, et al. Sulforaphane inhibits NLRP3 inflammasome activation in microglia through Nrf2-mediated miRNA alteration[J]. Immunol Lett, 2021, 233: 20-30.
[18]
Rui W, Li S, Xiao H, et al. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP induced mice model of Parkinson's disease[J]. Int J Neuropsychopharmacol, 2020, 23(11): 762-773.
[19]
Yun SP, Kam TI, Panicker N, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease[J]. Nat Med, 2018, 24(7): 931-938.
[20]
中国医药教育协会临床合理用药专业委员会,中国医疗保健国际交流促进会高血压分会,中国妇幼保健协会围产营养与代谢专业委员会,等.中国临床合理补充叶酸多学科专家共识[J].医药导报, 2021, 40(1): 1-19.
[21]
Gool JDV, Hirche H, Lax H, et al. Folic acid and primary prevention of neural tube defects: a review[J]. Reprod Toxicol, 2018, 80: 73-84.
[22]
Ebbing M, Bønaa KH, Nygård O, et al. Cancer incidence and mortality after treatment with folic acid and vitamin B12[J]. JAMA, 2009, 302(19): 2119-2126.
[23]
Zhang Q, Wu H, Zou M, et al. Folic acid improves abnormal behavior via mitigation of oxidative stress, inflammation, and ferroptosis in the BTBR T+ tf/J mouse model of autism[J]. J Nutr Biochem, 2019, 71: 98-109.
[24]
Shi Y, Huang C, Yi H, et al. RIPK3 blockade attenuates kidney fibrosis in a folic acid model of renal injury[J]. FASEB J, 2020, 34(8): 10286-10298.
[1] 陈晶晶, 钱芳. 新疆地区不同民族育龄妇女胚胎停育与叶酸代谢酶基因多态性及染色体异常的相关性[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 599-605.
[2] 杨瑾, 王红艳, 应春妹. 孕妇稳定补充叶酸后的血清叶酸水平及其影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 553-561.
[3] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[4] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[5] 郑丽华, 钱一菁, 黄崇甄, 周春娜. 山茱萸环烯醚萜苷改善6-OHDA诱导帕金森病细胞模型的损伤[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 324-331.
[6] 陈普建, 张璟, 陈芬, 陈怡伟, 余蓓蓓, 周春英. 双侧丘脑底核交叉电脉冲脑深部电刺激对帕金森病步态障碍的疗效观察[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 298-301.
[7] 李玺琳, 章邱东. 帕金森病患者胃肠功能障碍特点及其风险因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 145-149.
[8] 耿磊, 张照婷, 许磊, 黄海, 孙毅, 杨伏猛, 徐凯, 胡春峰. 帕金森病前驱期基底神经节环路磁共振弥散张量成像的应用研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 995-1003.
[9] 杨团峰, 孟雪, 王艳香, 卢葭, 孔德生, 赵元立, 刘献增. 男性帕金森病患者球海绵体肌反射初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(01): 28-32.
[10] 武文君, 沙莎, 田聪, 朱建. 急性心肌梗死老年患者NLRP3基因多态性与炎症指标的关联性[J]. 中华临床医师杂志(电子版), 2022, 16(03): 241-245.
[11] 吴远慧, 朱由瑾, 周向昭, 温杰, 高晓莉, 冯冬梅. 早期梅毒患者血清IL-1β、IL-27、IL-33水平与细胞免疫状况的关系[J]. 中华临床医师杂志(电子版), 2021, 15(09): 666-671.
[12] 谢艾伦, 郑冬燕, 蔡紫薇, 卢仁建, 彭永明, 张贺, 陈家隆. 鱼藤酮通过降低线粒体钙离子单向转运体蛋白表达促进多巴胺能神经元铁死亡[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 71-78.
[13] 谭锦莉, 林勇平, 徐韫健. 探讨叶酸受体阳性循环肿瘤细胞在肺癌患者早期诊断与预后评估中的作用[J]. 中华临床实验室管理电子杂志, 2022, 10(02): 101-106.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 韩远远, 于紫涵, 杨玲, 程弘禹, 宋春杰. C反应蛋白与白蛋白比值和中性粒细胞与淋巴细胞比值对老年帕金森病的诊断价值[J]. 中华老年病研究电子杂志, 2023, 10(01): 14-19.
阅读次数
全文


摘要