切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (01) : 6 -10. doi: 10.3877/cma.j.issn.2095-9141.2022.01.002

基础研究

NOGO-A在创伤性脑损伤后大鼠脑组织含量表达及干预实验研究
崔刚1, 王欢2, 付茂武1, 王莹1, 段虎斌2,()   
  1. 1. 250000 济南,山东中医药大学附属医院神经外科
    2. 030001 太原,山西医科大学第一医院神经外科
  • 收稿日期:2021-10-28 出版日期:2022-02-15
  • 通信作者: 段虎斌
  • 基金资助:
    国家自然科学基金(30600637); 中国博士后科学基金(2014M561207)

Experimental research of expression and intervention of NOGO-A in brain tissue of rats after traumatic brain injury

Gang Cui1, Huan Wang2, Maowu Fu1, Ying Wang1, Hubin Duan2,()   

  1. 1. Department of Neurosurgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan 250000, China
    2. Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2021-10-28 Published:2022-02-15
  • Corresponding author: Hubin Duan
引用本文:

崔刚, 王欢, 付茂武, 王莹, 段虎斌. NOGO-A在创伤性脑损伤后大鼠脑组织含量表达及干预实验研究[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 6-10.

Gang Cui, Huan Wang, Maowu Fu, Ying Wang, Hubin Duan. Experimental research of expression and intervention of NOGO-A in brain tissue of rats after traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(01): 6-10.

目的

研究创伤性脑损伤(TBI)后大鼠脑组织内NOGO-A分子含量及大鼠脑超微结构的改变以及二者与RHOA/ROCK信号传导通道的联系。

方法

45只健康SD大鼠按照随机数字表法分为对照组、中度创伤组和干预组,每组15只。中度创伤组和干预组大鼠采用击锤、撞杆自由落体原理致伤,制作TBI大鼠模型,干预组大鼠创伤后立即给予静脉注射盐酸法舒地尔注射液。TBI后24 h处死各组大鼠,采用电子显微镜观察各组损伤区脑组织细胞超微结构的变化,采用免疫组化技术观察各组大鼠脑组织中NOGO-A蛋白的含量,并测定NOGO-A蛋白的灰度值。

结果

TBI后24 h,中度创伤组及干预组大鼠脑组织损伤区出现病理性损伤,干预组程度较中度创伤组轻。3组大鼠脑组织内NOGO-A蛋白表达量比较,差异有统计学意义(F=176.085,P<0.05),中度创伤组的NOGO-A蛋白含量最高,干预组次之,对照组最低。

结论

TBI后24 h大鼠脑内损伤区出现细胞核、线粒体损害及细胞水肿,NOGO-A含量增加。RHOA/ROCK信号通路被阻断后能够改善TBI大鼠脑组织损伤区细胞超微结构损害以及减少NOGO-A的含量。

Objective

To study the changes of the content of the NOGO-A and the ultrastructure in rat brain tissue after traumatic brain injury (TBI), and their relationship with RHOA/ROCK transduction pathway.

Methods

Forty-five healthy SD rats were randomly divided into control group, moderate trauma group and intervention group, with 15 rats in each group. The TBI rat model was established by hammer and free falling rod in moderate trauma group and intervention group. The rats in the intervention group were given fasudil hydrochloride injection intravenously immediately after trauma. The rats in each group were sacrificed 24 h after TBI. The ultrastructural changes of brain tissue cells in the injured area of each group were observed by electron microscope, the content of NOGO-A protein in brain tissue of each group was observed by immunohistochemical technique, and the gray value of NOGO-A protein was measured.

Results

Twenty-four hours after TBI, pathological injury occurred in the brain tissue injury area of rats in the moderate trauma group and the intervention group, and the intervention group was less severe than in the moderate trauma group. There was significant difference in the expression of NOGO-A protein in the brain tissue of the three groups (F=176.085, P<0.05). The moderate trauma group had the highest NOGO-A protein content, followed by the intervention group and the lowest in the control group.

Conclusion

Twenty-four hours after TBI, the injure of cell nucleus、mitochondria and cells edema appeared in the damage area of brains of rats, the distribution and the content of the NOGO-A in the damage area of rats increased. Blocking of the RHO/ROCK signaling pathway can improve the damage of the ultrastructure of the brain cell in the damage area and reduce the content and distribution of NOGO-A.

图1 大鼠撞击骨窗图示
图2 电子显微镜下各组大鼠损伤区超微结构变化(×12 000)A:对照组;B:中度创伤组;C:干预组
图3 颅脑损伤后24 h各组大鼠NOGO-A蛋白的表达(免疫组化染色,×400)A:对照组;B:中度创伤组;C:干预组
表1 创伤性脑损伤后24 h的大鼠NOGO-A蛋白表达变化
[1]
Tarapore PE, Vassar MJ, Cooper S, et al. Establishing a TBI program of care: benchmarking outcomes after institutional adoption of evidence-based guidelines[J]. J Neurotrauma, 2016, 33(22): 2026-2033.
[2]
Majdan M, Rusnák M, Bražinová A, et al. Severity, causes and outcomes of traumatic brain injuries occurring at different locations: implications for prevention and public health[J]. Cent Eur J Public Health, 2015, 23(2): 142-148.
[3]
Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research[J]. Lancet Neurol, 2017, 16(12): 987-1048.
[4]
Zelinkova V, Brazinova A, Taylor MS, et al. Location of traumatic brain injury-related deaths: epidemiological analysis of 11 European countries[J]. Brain Inj, 2019, 33(7): 830-835.
[5]
Zusman BE, Kochanek PM, Jha RM. Cerebral edema in traumatic brain injury: a historical framework for current therapy[J]. Curr Treat Options Neurol, 2020, 22(3): 9.
[6]
Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity[J]. Cytoskeleton (Hoboken), 2010, 67(9): 545-554.
[7]
Shi J, Wei L. Rho kinase in the regulation of cell death and survival[J]. Arch Immunol Ther Exp (Warsz), 2007, 55(2): 61-75.
[8]
Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1[J]. Nature, 2000, 403(6768): 434-439.
[9]
Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration[J]. Nature, 2001, 18, 409(6818): 341-346.
[10]
Grandpre T, Li S, Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration[J]. Nature, 2002, 417(6888): 547-551.
[11]
Wang X, Chun SJ, Treloar H, et al. Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact[J]. J Neurosci, 2002, 22(13): 5505-5515.
[12]
Skaper SD, Moore SE, Walsh FS. Cell signalling cascades regulating neuronal growth-promoting and inhibitory cues[J]. Prog Neurobiol, 2001, 65(6): 593-608.
[13]
Neumann S, Bradke F, Tessier-Lavigne M, et al. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation[J]. Neuron, 2002, 34(6): 885-893.
[14]
Cai D, Deng K, Mellado W, et al. Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro[J]. Neuron, 2002, 35(4): 711-719.
[15]
Ryan TJ, Grant SG. The origin and evolution of synapses[J]. Nat Rev Neurosci, 2009, 10(10): 701-712.
[1] 周志鸿, 彭立辉. 间充质干细胞来源的细胞外囊泡治疗创伤性脑损伤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 251-255.
[2] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[3] 王建鹏, 廖勇仕, 丁文聪, 李冲, 陈锐. lncRNA在创伤性脑损伤中的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 365-370.
[4] 崔刚, 王德亮, 付茂武, 田璧铭, 王莹, 段虎斌. 创伤性脑损伤后鼠脑内RHO/ROCK信号通路与神经炎症反应及病理性损伤关系的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 324-328.
[5] 傅世龙, 王国锋, 侯鹏伟, 袁邦清, 魏梁锋, 王守森. 颅脑创伤患者术后再次开颅清除对侧血肿的影响因素分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 287-292.
[6] 程俊凯, 罗耀文, 李娟, 张磊, 杨淑涵, 王彦刚. 重复经颅磁刺激上调DJ-1表达改善小鼠创伤性脑损伤后功能障碍的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 261-268.
[7] 崔刚, 肖友朝, 王欢, 田璧铭, 王莹, 段虎斌. RHO/ROCK信号通路对创伤性脑损伤后颅内神经系统微环境的影响[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 204-208.
[8] 王鸿, 高俊宏, 卢青, 刘进仁, 范小琳, 李亮, 马宁, 王琪. 基于CiteSpace的创伤性脑损伤研究文献计量学分析[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 141-149.
[9] 齐洪武, 刘岩松, 曾维俊, 张立钊, 郭洪均, 刘清石. 儿童创伤性脑损伤的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 121-124.
[10] 毕万达, 刘阳珷玥, 戴双双. 载脂蛋白E在创伤性脑损伤中作用及机制的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 51-55.
[11] 余鹏飞, 麦兴进, 符树强, 苏保寿, 吴益敏, 喻闻庆. 血清sTREM-1、IL-12及IL-33水平对创伤性脑损伤严重程度和预后评估的价值[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 18-22.
[12] 解东成, 陈红伟, 王圣杰, 郭小川. 创伤性脑损伤后不同程度脑积水患者脑室-腹腔分流术临床疗效分析[J]. 中华神经创伤外科电子杂志, 2021, 07(02): 92-95.
[13] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[14] 冯鸿雁, 孙雪霞, 赵磊, 王丽芹, 张媛媛, 董静. 外周血外泌体及RhoA/ROCK信号通路与系统性红斑狼疮血小板减少患者出血症状的相关性[J]. 中华临床医师杂志(电子版), 2021, 15(03): 194-199.
[15] 吴敏, 潘鑫, 王忻, 邱晨, 陈伟, 顾慧. 镇江市院前救治的创伤性脑损伤患者特征分析[J]. 中华卫生应急电子杂志, 2022, 08(01): 18-21.
阅读次数
全文


摘要