切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (01) : 51 -55. doi: 10.3877/cma.j.issn.2095-9141.2022.01.011

综述

载脂蛋白E在创伤性脑损伤中作用及机制的研究进展
毕万达1, 刘阳珷玥1, 戴双双1,()   
  1. 1. 400038 重庆,陆军军医大学基础医学院
  • 收稿日期:2021-06-03 出版日期:2022-02-15
  • 通信作者: 戴双双
  • 基金资助:
    国家自然科学基金(82071779)

Roles and mechanisms of apolipoprotein E in traumatic brain injury

Wanda Bi1, Yangwuyue Liu1, Shuangshuang Dai1,()   

  1. 1. School of Basic Medicine, Army Medical University, Chongqing 400038, China
  • Received:2021-06-03 Published:2022-02-15
  • Corresponding author: Shuangshuang Dai
引用本文:

毕万达, 刘阳珷玥, 戴双双. 载脂蛋白E在创伤性脑损伤中作用及机制的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 51-55.

Wanda Bi, Yangwuyue Liu, Shuangshuang Dai. Roles and mechanisms of apolipoprotein E in traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(01): 51-55.

创伤性脑损伤(TBI)作为神经外科最常见的颅脑损伤疾病,具有高发病率、高致残率和高死亡率的特点。载脂蛋白E(apoE)是神经系统一类重要的载脂蛋白,在TBI的病理生理变化过程中起到了关键作用。由于apoE亚型的功能与分布具有异质性,靶向apoE治疗TBI尚有争议。本文主要就不同亚型apoE在TBI中的作用与机制作一综述,为深入研究靶向apoE的TBI治疗策略提供参考。

Traumatic brain injury (TBI), the most common brain injury disease in neurosurgery department, is characterized by high rates of morbidity and disability. Apolipoprotein E (apoE), an important type of apolipoproteins in central nervous system, plays fundamental roles in the pathophysiological processes of TBI. However, the distributions and functions differ from apoE subtypes, making it still debatable to targeting at apoE for TBI treatmennts. This article reviews the possible roles and mechanisms of different apoE subtypes in TBI, so as to provide further research in TBI treatment strategies targeting apoE.

表1 不同apoE亚型在TBI中的作用
图1 apoE、AD与TBI的关系图AD:阿尔兹海默病;apoE:载脂蛋白E;TBI:创伤性脑损伤
[1]
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295.
[2]
邹隽风,黄贤键,吴楚伟,等.中国颅脑创伤流行病学中存在的部分问题探讨[J].中华神经创伤外科电子杂志, 2021, 7(1): 59-62.
[3]
Ng SY, Lee AYW. Traumatic brain injuries: pathophysiology and potential therapeutic targets[J]. Front Cell Neurosci, 2019, 13: 528.
[4]
Rebeck GW. The role of APOE on lipid homeostasis and inflammation in normal brains[J]. J Lipid Res, 2017, 58(8): 1493-1499.
[5]
Chen Y, Strickland MR, Soranno A, et al. Apolipoprotein E: structural insights and links to Alzheimer disease pathogenesis[J]. Neuron, 2021, 109(2): 205-221.
[6]
Choudhury P, Ramanan VK, Boeve BF. APOE ɛ4 allele testing and risk of Alzheimer disease[J]. JAMA, 2021, 325(5): 484-485.
[7]
Jiang Y, Sun X, Xia Y, et al. Effect of APOE polymorphisms on early responses to traumatic brain injury[J]. Neurosci Lett, 2006, 408(2): 155-158.
[8]
Flowers SA, Rebeck GW. APOE in the normal brain[J]. Neurobiol Dis, 2020, 136: 104724.
[9]
Sun Y, Wu S, Bu G, et al. Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocyte-specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins[J]. J Neurosci, 1998, 18(9): 3261-3272.
[10]
Laskowitz DT, Fillit H, Yeung N, et al. Apolipoprotein E-derived peptides reduce CNS inflammation: implications for therapy of neurological disease[J]. Acta Neurol Scand Suppl, 2006, 185: 15-20.
[11]
吴海涛,江涌,张晓冬,等.载脂蛋白E基因多态性影响星形胶质细胞损伤后早期NF-κB表达的实验研究[J].第三军医大学学报, 2010, 32(2): 103-106.
[12]
Laurat E, Poirier B, Tupin E, et al. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice[J]. Circulation, 2001, 104(2): 197-202.
[13]
James ML, Komisarow JM, Wang H, et al. Therapeutic development of apolipoprotein E mimetics for acute brain injury: augmenting endogenous responses to reduce secondary injury[J]. Neurotherapeutics, 2020, 17(2): 475-483.
[14]
Muza P, Bachmeier C, Mouzon B, et al. APOE genotype specific effects on the early neurodegenerative sequelae following chronic repeated mild traumatic brain injury[J]. Neuroscience, 2019, 404: 297-313.
[15]
Main BS, Villapol S, Sloley SS, et al. Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury[J]. Mol Neurodegener, 2018, 13(1): 17.
[16]
Teng Z, Guo Z, Zhong J, et al. ApoE influences the blood-brain barrier through the NF-κB/MMP-9 pathway after traumatic brain injury[J]. Sci Rep, 2017, 7(1): 6649.
[17]
Huang YA, Zhou B, Wernig M, et al. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ Secretion[J]. Cell, 2017, 168(3): 427-441.e21.
[18]
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders[J]. Neuron, 2008, 57(2): 178-201.
[19]
Chen XH, Johnson VE, Uryu K, et al. A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury[J]. Brain Pathol, 2009, 19(2): 214-223.
[20]
Bell RD, Sagare AP, Friedman AE, et al. Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system[J]. J Cereb Blood Flow Metab, 2007, 27(5): 909-918.
[21]
Rodriguez-Vieitez E, Nielsen HM. Associations between APOE variants, tau and alpha-synuclein [J]. Adv Exp Med Biol, 2019, 1184:177-186.
[22]
Cao J, Gaamouch FE, Meabon JS, et al. ApoE4-associated phospholipid dysregulation contributes to development of Tau hyper-phosphorylation after traumatic brain injury[J]. Sci Rep, 2017, 7(1): 11372.
[23]
Alexander S, Kerr ME, Kim Y, et al. Apolipoprotein E4 allele presence and functional outcome after severe traumatic brain injury [J]. J Neurotrauma, 2007, 24(5): 790-797.
[24]
Asaro A, Carlo-Spiewok AS, Malik AR, et al. Apolipoprotein E4 disrupts the neuroprotective action of sortilin in neuronal lipid metabolism and endocannabinoid signaling[J]. Alzheimers Dement, 2020, 16(9): 1248-1258.
[25]
Zhang HL, Mao XJ, Zhang XM, et al. APOE epsilon3 attenuates experimental autoimmune neuritis by modulating T cell, macrophage and Schwann cell functions[J]. Exp Neurol, 2011, 230(2): 197-206.
[26]
Zhong J, Cheng C, Liu H, et al. Bexarotene protects against traumatic brain injury in mice partially through apolipoprotein E[J]. Neuroscience, 2017, 343: 434-448.
[27]
LoBue C, Woon FL, Rossetti HC, et al. Traumatic brain injury history and progression from mild cognitive impairment to Alzheimer disease[J]. Neuropsychology, 2018, 32(4): 401-409.
[28]
Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches[J]. Lancet Neurol, 2021, 20(1): 68-80.
[29]
Deng H, Ordaz A, Upadhyayula PS, et al. Apolipoprotein E epsilon 4 genotype, mild traumatic brain injury, and the development of chronic traumatic encephalopathy[J]. Med Sci (Basel), 2018, 6(3): 78.
[30]
Buchanan MM, Hutchinson M, Watkins LR, et al. Toll-like receptor 4 in CNS pathologies[J]. J Neurochem, 2010, 114(1): 13-27.
[31]
Corrigan F, Mander KA, Leonard AV, et al. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation[J]. J Neuroinflammation, 2016, 13(1): 264.
[32]
Blackman JA, Worley G, Strittmatter WJ. Apolipoprotein E and brain injury: implications for children[J]. Dev Med Child Neurol, 2005, 47(1): 64-70.
[33]
Ponsford J, McLaren A, Schönberger M, et al. The association between apolipoprotein E and traumatic brain injury severity and functional outcome in a rehabilitation sample[J]. J Neurotrauma, 2011, 28(9): 1683-1692.
[34]
Li L, Bao Y, He S, et al. The association between apolipoprotein E and functional outcome after traumatic brain injury: a meta-analysis[J]. Medicine (Baltimore), 2015, 94(46): e2028.
[35]
Namjoshi DR, Martin G, Donkin J, et al. The liver X receptor agonist GW3965 improves recovery from mild repetitive traumatic brain injury in mice partly through apolipoprotein E[J]. PLoS One, 2013, 8(1): e53529.
[36]
Cao F, Jiang Y, Wu Y, et al. Apolipoprotein E-mimetic COG1410 reduces acute vasogenic edema following traumatic brain injury[J]. J Neurotrauma, 2016, 33(2): 175-82.
[37]
Wang C, Najm R, Xu Q, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector[J]. Nat Med, 2018, 24(5): 647-657.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[3] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[4] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[5] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[6] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[7] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[8] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[9] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[10] 郝然, 魏姗珊, 吴倩如, 李学民, 翟长斌. 干燥综合征血清微量元素变化及其与疾病严重程度的相关性研究[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 215-220.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要