切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2023, Vol. 09 ›› Issue (02) : 69 -75. doi: 10.3877/cma.j.issn.2095-9141.2023.02.002

基础研究

三种模拟创伤性脑损伤体外细胞模型的损伤特征比较
阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗()   
  1. 510006 广州,华南理工大学医学院(生命科学研究院)
    100853 北京,解放军总医院京南医疗区门诊部
    100850 北京,军事科学院军事医学研究院脑科学中心
    100853 北京,解放军总医院第一医学中心神经外科医学部
    230031 合肥,安徽医科大学海军临床学院
  • 收稿日期:2023-01-24 出版日期:2023-04-15
  • 通信作者: 程岗

Comparison of injury features of three cell models simulating traumatic brain injury in vitro

Abudurxiti Adilai·, Ao Fei, Xiaowen Xing, Shengqiang Xie, Rui Zhang, Xiaojuan Lan, Gang Cheng()   

  1. South China University of Technology School of Medicine (School of Life Sciences), Guangzhou 510006, China
    Department of Outpatient, Jingnan Medical District, General Hospital of the People's Liberation Army, Beijing 100853, China
    Brain Science Center, Academy of Military Medicine, Military Science, Beijing 100850, China
    Neurosurgery Institute, The First Medical Center, General Hospital of PLA, Beijing 100853, China
    Naval Clinical College of Anhui Medical University, Hefei 230031, China
  • Received:2023-01-24 Published:2023-04-15
  • Corresponding author: Gang Cheng
  • Supported by:
    PLA Medical Youth Support Project(17QNP014); PLA Equipment Project(LB20191A010010); PLA Equipment Project(LB20201A010026)
引用本文:

阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.

Abudurxiti Adilai·, Ao Fei, Xiaowen Xing, Shengqiang Xie, Rui Zhang, Xiaojuan Lan, Gang Cheng. Comparison of injury features of three cell models simulating traumatic brain injury in vitro[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(02): 69-75.

目的

系统比较拉伸模型、氧-糖剥夺(OGD)模型以及过氧化氢(H2O2)处理的氧化应激模型的细胞损伤特征,为TBI研究中细胞模型的选择提供参考。

方法

复苏冻存的HT-22细胞后,将HT-22细胞接种于六孔板中,分为实验组和对照组,实验组分别制备细胞拉伸损伤模型、OGD模型、氧化应激损伤模型,对照组正常培养,不做特殊处理。通过显微镜观察细胞形态的变化,CCK-8实验分析测试细胞活力;提取细胞蛋白,采用Western blot检测凋亡(Bcl-2、Bax)、坏死性凋亡(RIPK3、RIPK1)、铁死亡(ACSL4、GPX4、SLC7A11)等不同细胞死亡途径的标志物变化。

结果

与对照组相比,实验组的3种损伤模型均导致HT-22细胞出现不同程度的形态异常、增殖受限或脱落现象。CCK-8检测结果显示,不同模型处理后细胞存活率均较对照组明显降低,差异具有统计学意义(P<0.05)。Western blot检测结果显示,3.0 PSI强度的拉伸处理后细胞中的GPX4、SLC7A11、Bax、RIPK3、RIPK1蛋白表达较对照组明显增高,差异均有统计学意义(P<0.05);OGD处理12 h后,SLC7A11和Bax表达较对照组明显上调,差异均有统计学意义(P<0.05);800 μmol/L的H2O2处理后,Bcl-2和RIPK1蛋白较对照组表达明显上调,差异均有统计学意义(P<0.05)。

结论

拉伸损伤模型更能反映TBI后复杂的损伤特点,OGD与H2O2处理模型更适合用于研究特定的损伤通路。

Objective

To systematically compare the cell damage characteristics of stretch injury model, oxygen-glucose deprivation (OGD) model and hydrogen peroxide (H2O2)-treated oxidative stress model, and to provide a reference for the selection of cell models in TBI research.

Methods

After resuscitation of frozen HT-22 cells, HT-22 cells were seeded in Six-well plates, which were divided into experimental group and control group. The experimental group prepared cell stretch injury models, OGD models, and oxidative stress injury models respectively. The control group was cultured normally without any special treatment. The changes of cell morphology were observed by microscope, and cell viability was tested by CCK-8 analysis; cell proteins were extracted, and changes of apoptosis markers (Bcl-2, Bax), necroptosis markers (RIPK3, RIPK1), ferroptosis markers (ACSL4, GPX4, SLC7A11) were detected by Western blot.

Results

Compared with the control group, all three injury models led to abnormal morphological changes in different degrees, restricted proliferation or cell shedding in HT-22 cells, indicating cell damage. CCK-8 analysis showed that the cell viability in different model treatment groups was significantly reduced (P<0.05). The results of Western blot demonstrated that the expression of GPX4, SLC7A11, Bax, RIPK3 and RIPK1 proteins in cells treated with 3.0 PSI tensile strength was significantly increased, with statistical significance (P<0.05). After OGD treatment for 12 h, the expression of SLC7A11 and Bax was significantly up-regulated, with statistical significance (P<0.05). After 800 μmol/L hydrogen peroxide treatment, the expression of Bcl-2 and RIPK1 proteins was significantly up-regulated, with statistical significance (P<0.05).

Conclusion

The stretch model can better reflect the complex injury characteristics after TBI, and the OGD and H2O2 treatment models are more suitable for studying specific injury pathways.

图1 不同处理组HT-22细胞形态变化A~F:实验组;A:拉伸损伤峰值压力为2.5 PSI(100×);B:拉伸损伤峰值压力为3.0 PSI(100×);C:OGD处理3 h(40×);D:OGD处理12 h(40×);E:200 μmol/L H2O2处理(40×);F:800 μmol/L H2O2处理(40×);G:对照组(100×)
Fig.1 Morphological changes of HT-22 cells in different models
图2 不同处理组细胞存活率比较与对照组比较,aP<0.05,n=3
Fig.2 Comparison of cell survival rates among different models
图3 细胞拉伸损伤模型中铁死亡、凋亡和坏死性凋亡相关蛋白表达变化A:蛋白Western blot条带图;B:相关蛋白表达水平;与对照组比较,aP<0.05,n=3
Fig.3 Expression of ferroptosis, apoptosis and necroptosis related marker proteins in cell stretch injury model
图4 OGD模型中铁死亡、凋亡和坏死性凋亡相关蛋白表达变化A:蛋白Western blot条带图;B:相关蛋白表达水平;与对照组比较,aP<0.05,n=3
Fig.4 Expression of ferroptosis,apoptosis and necroptosis related marker proteins in OGD model
图5 氧化应激损伤模型中铁死亡、凋亡和坏死性凋亡相关蛋白表达变化A:蛋白Western blot条带图;B:相关蛋白表达水平;与对照组比较,aP<0.05,n=3
Fig.5 Expression of ferroptosis,apoptosis and necroptosis related marker proteins in oxidative stress injury model
[1]
Hemphill MA, Dauth S, Yu CJ, et al. Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction[J]. Neuron, 2015, 85(6): 1177-92. DOI: 10.1016/j.neuron.2015.02.041.
[2]
崔大勇,王新,张博.小胶质细胞在颅脑损伤中免疫调控及对神经元的作用机制[J].中华神经创伤外科电子杂志, 2022, 8(1): 56-58. DOI: 10.3877/cma.j.issn.2095-9141.2022.01.012.
[3]
Liu ZQ, Xing XW, Zhu PC, et al. Hyaluronic acid extracellularly inhibits ferroptosis via cell-surface receptors in acute traumatic brain injury[J]. Nano Today, 2022, 46: 101625. DOI: 10.1016/j.nantod.2022.101625.
[4]
何鑫,贺亚龙,武秀权,等.成年重型颅脑损伤后加重继发性脑损伤的危险因素分析[J].中华神经创伤外科电子杂志, 2021, 7(3): 132-136. DOI: 10.3877/cma.j.issn.2095-9141.2021.03.002.
[5]
Blennow K, Hardy J, Zetterberg H. The neuropathology and neurobiology of traumatic brain injury[J]. Neuron, 2012, 76(5): 886-899. DOI: 10.1016/j.neuron.2012.11.021.
[6]
Morrison B 3rd, Elkin BS, Dollé JP, et al. In vitro models of traumatic brain injury[J]. Annu Rev Biomed Eng, 2011, 13: 91-126. DOI: 10.1146/annurev-bioeng-071910-124706.
[7]
Salvador E, Burek M, Förster CY. Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade[J]. Front Cell Neurosci, 2015, 9: 323. DOI: 10.3389/fncel.2015.00323.
[8]
Wang H, Zhou XM, Wu LY, et al. Aucubin alleviates oxidative stress and inflammation via Nrf2-mediated signaling activity in experimental traumatic brain injury[J]. J Neuroinflammation, 2020, 17(1): 188. DOI: 10.1186/s12974-020-01863-9.
[9]
Wu YH, Rosset S, Lee TR, et al. In vitro models of traumatic brain injury: a systematic review[J]. J Neurotrauma, 2021, 38(17): 2336-2372. DOI: 10.1089/neu.2020.7402.
[10]
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurology, 2019, 18(3): 286-295.
[11]
祁磊,王茂德.创伤性脑损伤与神经凋亡的研究进展[J].中华脑科疾病与康复杂志(电子版), 2016, 6(1): 53-55. DOI: 10.3877/cma.j.issn.2095-123X.2016.01.012.
[12]
刘晓龙,李文臣,陈勃,等. INT-777对颅脑损伤小鼠脑水肿及血脑屏障通透性的影响[J].中华神经创伤外科电子杂志, 2021, 7(6): 325-330. DOI: 10.3877/cma.j.issn.2095-9141.2021.06.002.
[13]
Salvador E, Burek M, Förster CY. An in vitro model of traumatic brain injury[J]. Methods Mol Biol, 2018, 1717: 219-227. DOI: 10.1007/978-1-4939-7526-6_17.
[14]
Ellis EF, McKinney JS, Willoughby KA, et al. A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes[J]. J Neurotrauma, 1995, 12(3): 325-39. DOI: 10.1089/neu.1995.12.325.
[15]
McKinney JS, Willoughby KA, Liang S, et al. Stretch-induced injury of cultured neuronal, glial, and endothelial cells. Effect of polyethylene glycol-conjugated superoxide dismutase[J]. Stroke, 1996, 27(5): 934-940. DOI: 10.1161/01.str.27.5.934.
[16]
Wanner IB, Deik A, Torres M, et al. A new in vitro model of the glial scar inhibits axon growth[J]. Glia, 2008, 56(15): 1691-709. DOI: 10.1002/glia.20721.
[17]
Rosas-Hernandez H, Burks SM, Cuevas E, et al. Stretch-induced deformation as a model to study dopaminergic dysfunction in traumatic brain injury[J]. Neurochem Res, 2019, 44(11): 2546-2555. DOI: 10.1007/s11064-019-02872-8.
[18]
Tang D, Kang R, Berghe TV, et al. The molecular machinery of regulated cell death[J]. Cell Res, 2019, 29(5): 347-364. DOI: 10.1038/s41422-019-0164-5.
[19]
于泽奇,衣泰龙,涂悦,等.应用细胞应力加载系统建立HT-22细胞损伤模型的实验研究[J].中华神经外科杂志, 2017, 33(4): 398-402. DOI: 10.3760/cma.j.issn.1001-2346.2017.04.019.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[5] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[6] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[7] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[8] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[9] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[10] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要