[1] |
Kolias AG, Rubiano AM, Figaji A, et al. Traumatic brain injury: global collaboration for a global challenge[J]. Lancet Neurol, 2019, 18(2): 136-137.
|
[2] |
Majdan M, Plancikova D, Brazinova A, et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis[J]. Lancet Public Health, 2016, 1(2): e76-e83.
|
[3] |
Cash A, Theus MH. Mechanisms of blood-brain barrier dysfunction in traumatic brain injury[J]. Int J Mol Sci, 2020, 21(9): 3344.
|
[4] |
Daneman R, Prat A. The blood-brain barrier[J]. Cold Spring Harb Perspect Biol, 2015, 7(1): a020412.
|
[5] |
Higashida T, Kreipke CW, Rafols JA, et al. The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury[J]. J Neurosurg, 2011, 114(1): 92-101.
|
[6] |
Yuan J, Wang A, He Y, et al. Cordycepin attenuates traumatic brain injury-induced impairments of blood-brain barrier integrity in rats[J]. Brain Res Bull, 2016, 127: 171-176.
|
[7] |
Wu X, Lv YG, Du YF, et al. Neuroprotective effects of INT-777 against Aβ1-42-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice[J]. Brain Behav Immun, 2018, 73: 533-545.
|
[8] |
Zuo G, Zhang T, Huang L, et al. Activation of TGR5 with INT-777 attenuates oxidative stress and neuronal apoptosis via cAMP/PKCε/ALDH2 pathway after subarachnoid hemorrhage in rats[J]. Free Radic Biol Med, 2019, 143: 441-453.
|
[9] |
Liang H, Matei N, McBride DW, et al. Activation of TGR5 protects blood brain barrier via the BRCA1/Sirt1 pathway after middle cerebral artery occlusion in rats[J]. J Biomed Sci, 2020, 27(1): 61.
|
[10] |
Jin P, Deng S, Tian M, et al. INT-777 prevents cognitive impairment by activating Takeda G protein-coupled receptor 5 (TGR5) and attenuating neuroinflammation via cAMP/PKA/CREB signaling axis in a rat model of sepsis[J]. Exp Neurol, 2021, 335: 113504.
|
[11] |
冯龙,尹一恒,郑杨睿,等. 右美托咪啶在南海近滩海水条件下对开放性颅脑损伤的抗炎和脑保护作用[J]. 中华神经创伤外科电子杂志, 2020, 6(6): 360-363.
|
[12] |
Pavlovic D, Pekic S, Stojanovic M, et al. Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae[J]. Pituitary, 2019, 22(3): 270-282.
|
[13] |
Bao HJ, Wang T, Zhang MY, et al. Poloxamer-188 attenuates TBI-induced blood-brain barrier damage leading to decreased brain edema and reduced cellular death[J]. Neurochem Res, 2012, 37(12): 2856-2867.
|
[14] |
崔向宁,尹岭,王玉来. 脑疏宁对颅脑创伤后大鼠血脑屏障通透性及MMP-9表达的影响[J]. 北京中医药大学学报, 2005, 28(2): 60-62.
|
[15] |
Yang M, Wang X, Fan Y, et al. Semaphorin 3A contributes to secondary blood-brain barrier damage after traumatic brain injury[J]. Front Cell Neurosci, 2019, 13: 117.
|
[16] |
杨鹏,司道文,李云,等. 盐酸戊乙奎醚对大鼠内毒素性脑损伤后血脑屏障通透性的影响[J]. 中华创伤杂志, 2015, 31(11): 1020-1024.
|
[17] |
Robinson BD, Isbell CL, Anasooya Shaji C, et al. Quetiapine protects the blood-brain barrier in traumatic brain injury[J]. J Trauma Acute Care Surg, 2018, 85(5): 968-976.
|
[18] |
Unterberg AW, Stover J, Kress B, et al. Edema and brain trauma[J]. Neuroscience, 2004, 129(4): 1021-1029.
|
[19] |
Carrera RM, Pacheco AM Jr, Mastroti RA. Qualitative evaluation of the blood-brain barrier after the use of hypertonic saline solution in young rats[J]. Eur Surg Res, 2001, 33(5-6): 311-317.
|
[20] |
李良平,徐如祥,钟世镇,等. 大鼠脑损伤后血脑屏障变化的定量研究[J]. 第一军医大学学报, 1998, (4): 252-253.
|
[21] |
Saunders NR, Dziegielewska KM, Møllgård K, et al. Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives?[J]. Front Neurosci, 2015, 9: 385.
|
[22] |
李玉斌,刘运生,冯继,等. 高温、亚低温对大鼠重型脑损伤血脑屏障通透性的影响及其机制[J]. 中华创伤杂志, 2008, 24(6): 428-431.
|
[23] |
李长栋,周杰,蔡志标,等. 异甘草素对大鼠脑损伤后MMP-9和TIMP-1蛋白酶表达的影响[J]. 中华神经创伤外科电子杂志, 2021, 7(4): 199-202.
|
[24] |
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases[J]. Int J Mol Sci, 2020, 21(24): 9739.
|
[25] |
Zhu H, Dai R, Zhou Y, et al. TLR2 ligand Pam3CSK4 regulates MMP-2/9 expression by MAPK/NF-κB signaling pathways in primary brain microvascular endothelial cells[J]. Neurochem Res, 2018, 43(10): 1897-1904.
|
[26] |
Ying X, Xie Q, Li S, et al. Water treadmill training attenuates blood-spinal cord barrier disruption in rats by promoting angiogenesis and inhibiting matrix metalloproteinase-2/9 expression following spinal cord injury[J]. Fluids Barriers CNS, 2020, 17(1): 70.
|
[27] |
Qin W, Li J, Zhu R, et al. Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway[J]. Aging (Albany NY), 2019, 11(23): 11391-11415.
|
[28] |
Li F, Geng X, Yip J, et al. Therapeutic target and cell-signal communication of chlorpromazine and promethazine in attenuating blood-brain barrier disruption after ischemic stroke[J]. Cell Transplant, 2019, 28(2): 145-156.
|
[29] |
Almutairi MM, Gong C, Xu YG, et al. Factors controlling permeability of the blood-brain barrier[J]. Cell Mol Life Sci, 2016, 73(1): 57-77.
|
[30] |
Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications[J]. Neurobiol Dis, 2004, 16(1): 1-13.
|
[31] |
Reinhold AK, Rittner HL. Barrier function in the peripheral and central nervous system-a review[J]. Pflugers Arch, 2017, 469(1): 123-134.
|
[32] |
Wen J, Qian S, Yang Q, et al. Overexpression of netrin-1 increases the expression of tight junction-associated proteins, claudin-5, occludin, and ZO-1, following traumatic brain injury in rats[J]. Exp Ther Med, 2014, 8(3): 881-886.
|