切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2021, Vol. 07 ›› Issue (06) : 325 -330. doi: 10.3877/cma.j.issn.2095-9141.2021.06.002

基础研究

INT-777对颅脑损伤小鼠脑水肿及血脑屏障通透性的影响
刘晓龙1, 李文臣1, 陈勃1, 朱文豪1, 张晓宇1, 王海峰1,()   
  1. 1. 130021 长春,吉林大学第一医院神经创伤外科
  • 收稿日期:2021-10-26 出版日期:2021-12-15
  • 通信作者: 王海峰
  • 基金资助:
    国家自然科学基金(81871555); 吉林省财政厅(2017F006); 吉林省科技厅(20200603002SF)

Effects of INT-777 on cerebral edema and blood brain barrier permeability in mice with traumatic brain injury

Xiaolong Liu1, Wenchen Li1, Bo Chen1, Wenhao Zhu1, Xiaoyu Zhang1, Haifeng Wang1,()   

  1. 1. Department of Neurotrauma, First Hospital of Jilin University, Changchun 130021, China
  • Received:2021-10-26 Published:2021-12-15
  • Corresponding author: Haifeng Wang
引用本文:

刘晓龙, 李文臣, 陈勃, 朱文豪, 张晓宇, 王海峰. INT-777对颅脑损伤小鼠脑水肿及血脑屏障通透性的影响[J/OL]. 中华神经创伤外科电子杂志, 2021, 07(06): 325-330.

Xiaolong Liu, Wenchen Li, Bo Chen, Wenhao Zhu, Xiaoyu Zhang, Haifeng Wang. Effects of INT-777 on cerebral edema and blood brain barrier permeability in mice with traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2021, 07(06): 325-330.

目的

探讨G蛋白偶联胆汁酸受体激动剂6R-乙基-23(S)-甲基胆酸(INT-777)对小鼠创伤性颅脑损伤(TBI)后脑水肿及血脑屏障(BBB)通透性的影响。

方法

52只健康雄性C57BL/6J小鼠按照随机数字表法分为假手术组(Sham组)、颅脑创伤组(TBI组)、DMSO治疗组(TBI+DMSO组)和INT-777治疗组(TBI+INT-777组),每组13只。Sham组仅开骨窗不做处理;TBI组、TBI+DMSO组和TBI+INT-777组开骨窗后采用液压颅脑打击仪建立小鼠TBI模型,TBI组只建模但不干预,TBI+DMSO组和TBI+INT-777组分别经鼻给予10%DMSO(30 μL)和INT-777(30 μg/kg)后建立模型。建模后48 h,采用干湿质量法测量损伤区以及对侧脑组织含水量;伊文思蓝(EB)外渗法测定BBB通透性;Western blot测定脑组织中基质金属蛋白酶-2(MMP-2)、基质金属蛋白酶-9(MMP-9)、闭锁小带蛋白1(ZO-1)、闭合蛋白(Occludin)和紧密连结蛋白-5(Claudin-5)表达水平。

结果

TBI后48 h,与Sham组比较,其他3组脑组织含水量(损伤侧)和EB含量均显著升高,脑组织中MMP-2和MMP-9蛋白表达上调,ZO-1、Claudin-5和Occludin蛋白表达下降,差异均有统计学意义(P<0.05);与TBI组和TBI+DMSO组比较,TBI+INT-777组脑组织含水量和EB含量显著降低,脑组织中MMP-2和MMP-9蛋白表达下调,ZO-1、Claudin-5和Occludin蛋白表达升高,差异均有统计学意义(P<0.05)。

结论

INT-777可减轻小鼠TBI后脑水肿,改善BBB的破坏,其机制可能与抑制伤后脑组织MMP-2、MMP-9的表达以及ZO-1、Claudin-5和Occludin的下调有关。

Objective

To investigate the effects of G protein coupled bile acid receptor agonist INT-777 on brain edema and blood brain barrier (BBB) permeability after traumatic brain injury (TBI) in mice.

Methods

A total of 52 healthy male C57BL/6J mice were randomly divided into sham operation group (Sham group), craniocranial trauma group (TBI group), DMSO treatment group (TBI+DMSO group) and INT-777 treatment group (TBI+INT-777 group), with 13 rats in each group. In Sham group, only had the bone window open without treatment. TBI model was established with a brain fluid-percussion instrument in TBI group, TBI+DMSO group and TBI+INT-777 group after the bone window was open. Among them, the TBI group was modeled without intervention, and the TBI+DMSO group and TBI+INT-777 group were modeled after given 10%DMSO (30 μL) and INT-777 (30 μg/kg) by transnasal administration, respectively. 48 h after modeling, the water content of the injured area and contralateral brain tissue was measured by dry-wet weight method. The blood-brain barrier permeability was measured by Evans-blue (EB) extravasation method, and the protein expression levels of MMP-2, MMP-9, ZO-1, Claudin-5 and Occludin in brain tissue were measured by Western blot.

Results

48 h after TBI, compared with Sham group, the water content (on the injured side) and extravasation of EB in brain tissue in the other three groups were significantly increased, the protein expressions of MMP-2 and MMP-9 in brain tissue were up-regulated, and the protein expressions of ZO-1, Claudin-5 and Occludin were decreased, the difference was statistically significant (P<0.05). Compared with TBI group and TBI+DMSO group, brain tissue water content and EB extravasation in TBI+INT-777 group were significantly decreased, the expression of MMP-2 and MMP-9 in brain tissue was down-regulated, and the expression of ZO-1, Claudin-5 and Occludin in brain tissue was increased, the difference was statistically significant (P<0.05).

Conclusion

INT-777 can reduce the cerebral edema after TBI in mice and improve the damage of the blood-brain barrier. The mechanism may be related to the inhibition of MMP-2 and MMP-9 expression and the down-regulation of ZO-1, Claudin-5 and Occludin in brain tissue after injury.

表1 各组小鼠脑损伤后48 h脑组织含水量、EB含量比较(±s
图1 各组小鼠脑损伤后48 h脑组织血脑屏障通透性检测A:Sham组;B:TBI组;C:TBI+DMSO组;D:TBI+INT-777组
图2 各组小鼠脑损伤后MMP-2、MMP-9蛋白表达变化A:Western blot电泳图;B:各组小鼠MMP-2、MMP-9蛋白表达比较;与Sham组比较,aP<0.05;与TBI组比较,bP<0.05;与TBI+DMSO组比较,cP<0.05;MMP-2:基质金属蛋白酶-2;MMP-9:基质金属蛋白酶-9
图3 各组脑组织中Claudin-5、Occludin和ZO-1蛋白表达变化A:Western blot电泳图;B:4组的Claudin-5、Occludin和ZO-1的蛋白表达比较;与Sham组比较,aP<0.05;与TBI组比较,bP<0.05;与TBI+DMSO组比较,cP<0.05;ZO-1:闭锁小带蛋白1;Occludin:闭合蛋白;Claudin-5:紧密连结蛋白-5
[1]
Kolias AG, Rubiano AM, Figaji A, et al. Traumatic brain injury: global collaboration for a global challenge[J]. Lancet Neurol, 2019, 18(2): 136-137.
[2]
Majdan M, Plancikova D, Brazinova A, et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis[J]. Lancet Public Health, 2016, 1(2): e76-e83.
[3]
Cash A, Theus MH. Mechanisms of blood-brain barrier dysfunction in traumatic brain injury[J]. Int J Mol Sci, 2020, 21(9): 3344.
[4]
Daneman R, Prat A. The blood-brain barrier[J]. Cold Spring Harb Perspect Biol, 2015, 7(1): a020412.
[5]
Higashida T, Kreipke CW, Rafols JA, et al. The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury[J]. J Neurosurg, 2011, 114(1): 92-101.
[6]
Yuan J, Wang A, He Y, et al. Cordycepin attenuates traumatic brain injury-induced impairments of blood-brain barrier integrity in rats[J]. Brain Res Bull, 2016, 127: 171-176.
[7]
Wu X, Lv YG, Du YF, et al. Neuroprotective effects of INT-777 against Aβ1-42-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice[J]. Brain Behav Immun, 2018, 73: 533-545.
[8]
Zuo G, Zhang T, Huang L, et al. Activation of TGR5 with INT-777 attenuates oxidative stress and neuronal apoptosis via cAMP/PKCε/ALDH2 pathway after subarachnoid hemorrhage in rats[J]. Free Radic Biol Med, 2019, 143: 441-453.
[9]
Liang H, Matei N, McBride DW, et al. Activation of TGR5 protects blood brain barrier via the BRCA1/Sirt1 pathway after middle cerebral artery occlusion in rats[J]. J Biomed Sci, 2020, 27(1): 61.
[10]
Jin P, Deng S, Tian M, et al. INT-777 prevents cognitive impairment by activating Takeda G protein-coupled receptor 5 (TGR5) and attenuating neuroinflammation via cAMP/PKA/CREB signaling axis in a rat model of sepsis[J]. Exp Neurol, 2021, 335: 113504.
[11]
冯龙,尹一恒,郑杨睿,等. 右美托咪啶在南海近滩海水条件下对开放性颅脑损伤的抗炎和脑保护作用[J]. 中华神经创伤外科电子杂志, 2020, 6(6): 360-363.
[12]
Pavlovic D, Pekic S, Stojanovic M, et al. Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae[J]. Pituitary, 2019, 22(3): 270-282.
[13]
Bao HJ, Wang T, Zhang MY, et al. Poloxamer-188 attenuates TBI-induced blood-brain barrier damage leading to decreased brain edema and reduced cellular death[J]. Neurochem Res, 2012, 37(12): 2856-2867.
[14]
崔向宁,尹岭,王玉来. 脑疏宁对颅脑创伤后大鼠血脑屏障通透性及MMP-9表达的影响[J]. 北京中医药大学学报, 2005, 28(2): 60-62.
[15]
Yang M, Wang X, Fan Y, et al. Semaphorin 3A contributes to secondary blood-brain barrier damage after traumatic brain injury[J]. Front Cell Neurosci, 2019, 13: 117.
[16]
杨鹏,司道文,李云,等. 盐酸戊乙奎醚对大鼠内毒素性脑损伤后血脑屏障通透性的影响[J]. 中华创伤杂志, 2015, 31(11): 1020-1024.
[17]
Robinson BD, Isbell CL, Anasooya Shaji C, et al. Quetiapine protects the blood-brain barrier in traumatic brain injury[J]. J Trauma Acute Care Surg, 2018, 85(5): 968-976.
[18]
Unterberg AW, Stover J, Kress B, et al. Edema and brain trauma[J]. Neuroscience, 2004, 129(4): 1021-1029.
[19]
Carrera RM, Pacheco AM Jr, Mastroti RA. Qualitative evaluation of the blood-brain barrier after the use of hypertonic saline solution in young rats[J]. Eur Surg Res, 2001, 33(5-6): 311-317.
[20]
李良平,徐如祥,钟世镇,等. 大鼠脑损伤后血脑屏障变化的定量研究[J]. 第一军医大学学报, 1998, (4): 252-253.
[21]
Saunders NR, Dziegielewska KM, Møllgård K, et al. Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives?[J]. Front Neurosci, 2015, 9: 385.
[22]
李玉斌,刘运生,冯继,等. 高温、亚低温对大鼠重型脑损伤血脑屏障通透性的影响及其机制[J]. 中华创伤杂志, 2008, 24(6): 428-431.
[23]
李长栋,周杰,蔡志标,等. 异甘草素对大鼠脑损伤后MMP-9和TIMP-1蛋白酶表达的影响[J]. 中华神经创伤外科电子杂志, 2021, 7(4): 199-202.
[24]
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases[J]. Int J Mol Sci, 2020, 21(24): 9739.
[25]
Zhu H, Dai R, Zhou Y, et al. TLR2 ligand Pam3CSK4 regulates MMP-2/9 expression by MAPK/NF-κB signaling pathways in primary brain microvascular endothelial cells[J]. Neurochem Res, 2018, 43(10): 1897-1904.
[26]
Ying X, Xie Q, Li S, et al. Water treadmill training attenuates blood-spinal cord barrier disruption in rats by promoting angiogenesis and inhibiting matrix metalloproteinase-2/9 expression following spinal cord injury[J]. Fluids Barriers CNS, 2020, 17(1): 70.
[27]
Qin W, Li J, Zhu R, et al. Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway[J]. Aging (Albany NY), 2019, 11(23): 11391-11415.
[28]
Li F, Geng X, Yip J, et al. Therapeutic target and cell-signal communication of chlorpromazine and promethazine in attenuating blood-brain barrier disruption after ischemic stroke[J]. Cell Transplant, 2019, 28(2): 145-156.
[29]
Almutairi MM, Gong C, Xu YG, et al. Factors controlling permeability of the blood-brain barrier[J]. Cell Mol Life Sci, 2016, 73(1): 57-77.
[30]
Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications[J]. Neurobiol Dis, 2004, 16(1): 1-13.
[31]
Reinhold AK, Rittner HL. Barrier function in the peripheral and central nervous system-a review[J]. Pflugers Arch, 2017, 469(1): 123-134.
[32]
Wen J, Qian S, Yang Q, et al. Overexpression of netrin-1 increases the expression of tight junction-associated proteins, claudin-5, occludin, and ZO-1, following traumatic brain injury in rats[J]. Exp Ther Med, 2014, 8(3): 881-886.
[1] 徐珍娥, 杨娅丽, 徐晨霞, 向巴曲西, 王家蓉. 无创脑水肿监测技术在高原地区重度窒息新生儿脑水肿中的临床应用[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 114-119.
[2] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[3] 吴东阳, 林向丹, 石佐林, 赵玉龙, 王振, 文安国, 纪鑫, 李俊之, 赵明光. NF-L、NLRP3、S100B 蛋白在颅脑损伤严重程度及预后评估中的应用价值[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 279-285.
[4] 罗磊, 熊建平, 郑宏伟, 王嗣嵩, 柴祥, 吴青, 潘海鹏. 静脉留置针穿刺引流治疗颅骨修补术后硬膜外积液一例报道[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 315-317.
[5] 从长春, 王春琳, 武孝刚, 王金标, 章福彬, 孙磊, 王李. 重型颅脑损伤患者呼吸机相关性肺炎的危险因素及病原学分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 151-157.
[6] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[7] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[8] 鹿海龙, 朱玉辐, 贺雪凤, 蔡廷江, 王栋, 朱圣玲, 张恩刚, 王策. 创伤性颅脑损伤二次手术的危险因素分析及预警模型构建[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 97-101.
[9] 刘彪, 巍山, 关永胜. 基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 22-27.
[10] 罗丹, 柏宋磊, 易峰. HMGB1-TLR2/TLR4/RAGE通路与颅脑损伤并发认知功能障碍病情变化的关系研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 28-34.
[11] 袁宝玉, 管义祥, 王东流, 陆正. 不同时机颅骨修补术治疗颅脑外伤的临床疗效[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 35-41.
[12] 李鑫, 刘炳辉, 程名, 王凡, 刘玉明, 周绍明. 基于Rotterdam CT评分评估的颅脑损伤术中控制性减压的临床应用价值[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 16-21.
[13] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
[14] 王晓静, 林家汉, 周桔丰, 李晨翠. 不同时机营养支持在改善重型颅脑损伤患者营养状态及免疫功能中的应用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 335-339.
[15] 李建, 张立, 高嵘, 倪海波, 宋照明, 陈周青, 王中. 创伤性脑血管损伤的识别和治疗[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(06): 596-603.
阅读次数
全文


摘要