切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2021, Vol. 07 ›› Issue (06) : 331 -338. doi: 10.3877/cma.j.issn.2095-9141.2021.06.003

基础研究

吸附NT-3的3D打印胶原蛋白/壳聚糖支架改善脊髓损伤后的运动功能
隋曌1, 彭凤2, 余凯1, 严小虎3, 李英4, 钟琳5, 刘晓银6,()   
  1. 1. 610500 成都,成都医学院第一附属医院神经外科
    2. 610500 成都,成都医学院第一附属医院麻醉科
    3. 610500 成都,成都医学院第一附属医院骨科
    4. 610500 成都,成都医学院第一附属医院胸心外科
    5. 610500 成都,成都医学院第一附属医院血液科
    6. 610041 成都,四川大学华西医院神经外科
  • 收稿日期:2021-03-30 出版日期:2021-12-15
  • 通信作者: 刘晓银

3D printing collagen/chitosan scaffold adsorbed NT-3 improved locomotor function after spinal cord injury

Zhao Sui1, Feng Peng2, Kai Yu1, Xiaohu Yan3, Ying Li4, Lin Zhong5, Xiaoyin Liu6,()   

  1. 1. Department of Neurosurgery, First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
    2. Department of Anesthesiology, First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
    3. Department of Orthopaedics, First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
    4. Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
    5. Department of Hematology, First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
    6. Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610065, China
  • Received:2021-03-30 Published:2021-12-15
  • Corresponding author: Xiaoyin Liu
引用本文:

隋曌, 彭凤, 余凯, 严小虎, 李英, 钟琳, 刘晓银. 吸附NT-3的3D打印胶原蛋白/壳聚糖支架改善脊髓损伤后的运动功能[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 331-338.

Zhao Sui, Feng Peng, Kai Yu, Xiaohu Yan, Ying Li, Lin Zhong, Xiaoyin Liu. 3D printing collagen/chitosan scaffold adsorbed NT-3 improved locomotor function after spinal cord injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2021, 07(06): 331-338.

目的

探究移植吸附神经营养素-3(NT-3)的3D打印胶原蛋白/壳聚糖支架对于脊髓损伤后运动功能的改善作用。

方法

制备吸附NT-3的3D打印胶原蛋白/壳聚糖支架。将80只成年雌性SD大鼠(220~250 g)随机分为4组:假手术组、模型组、3D打印支架组和3D打印支架-因子组,每组20只。假手术组:暴露脊髓后直接缝合硬脊膜无损伤;模型组:只进行T10脊髓全横断损伤;3D打印支架组:T10脊髓全横断损伤后植入3D打印胶原蛋白/壳聚糖支架;3D打印支架-因子组:T10脊髓全横断损伤后植入吸附NT-3的3D打印胶原蛋白/壳聚糖支架。脊髓损伤后1~8周采用BBB评分和斜坡爬壁实验。脊髓损伤后8周行电生理分析,评估大鼠的运动功能;行弥散张量纤维束成像观察脊髓缺损部位恢复情况。

结果

(1)脊髓损伤后1~8周,相对于假手术组、模型组和3D打印支架组,植入吸附NT-3的3D打印胶原蛋白/壳聚糖支架可以显著提高脊髓损伤大鼠的BBB评分和斜坡角度(P<0.05);(2)脊髓损伤后8周,与3D打印支架组和模型组相比,3D打印支架-因子组展现出在左后肢和右后肢的运动诱发电位和体感诱发电位中振幅和潜伏期的改善(P<0.05);(3)脊髓损伤后8周弥散张量纤维束成像的图像证明3D打印支架-因子组的脊髓损伤区域的再生神经纤维数量明显多于3D打印支架组和模型组。

结论

吸附NT-3的3D打印胶原蛋白/壳聚糖支架能改善脊髓损伤后的运动功能,有潜力成为脊髓损伤修复创新和安全的方法。

Objective

To explore the effect of transplantation of 3D printing collagen/chitosan scaffold adsorbed neurotrophin-3 (NT-3) on improving locomotor function after spinal cord injury (SCI).

Methods

The 3D printing collagen/chitosan scaffold adsorbed NT-3 was prepared. Eighty adult female SD rats (220-250 g) were randomly divided into four groups: sham operation group, model group, 3D printing scaffold group and 3D printing scaffold-factor group, with 20 rats in each group. Sham operation group: the spinal cord was exposed to the spinal cord and directly sutured the endorachis without injury; Model group: only undergoes T10 spinal cord transection; 3D printing scaffold group T10 spinal cord transection is implanted with 3D printing collagen/chitosan; 3D printing scaffold-factor group: T10 spinal cord transection was implanted with 3D printing collagen/chitosan scaffold adsorbed by NT-3. 1-8 weeks after SCI, the BBB score and the inclined-grid climbing test were used to evaluate the locomotor function of rats 8 weeks after SCI. Diffusion tensor fiber tract imaging was performed to observe the recovery of spinal cord defect at 8 weeks after SCI.

Results

(1) 1-8 weeks after SCI, compared to sham operation group, model group and 3D printing scaffold group, implantation of 3D printing collagen/chitosan scaffold adsorbed by NT-3 could significantly improve the spinal cord BBB score and slope angle of injured rats (P<0.05). (2) 8 weeks after SCI, compared with the 3D printing scaffold and model groups, the 3D printing scaffold-factor group showed improvements in amplitude and latency in the motor and somatosensory evoked potentials of the left and right hind limbs (P<0.05). (3) The image of diffusion tensor fiber bundle imaging at 8 weeks after SCI proved that the number of regenerated nerve fibers in the SCI area in 3D printing scaffold-factor group was significantly more than that of the 3D printing scaffold and model groups.

Conclusion

3D printing collagen/chitosan scaffold adsorbed NT-3 can improve locomotor function after SCI, and has the potential to become an innovative and safe method for the repair of SCI.

表1 3D打印胶原蛋白支架和3D打印胶原蛋白/壳聚糖支架的性能比较
图1 支架的形态和力学性能A:扫描电镜下支架的表面观;B:扫描电镜下支架的截面观
图2 支架的生物相容性A:光学显微镜下的典型NSCs形态图像;B:荧光显微镜下的Nestin阳性细胞;C:吸附NT-3的3D打印胶原蛋白/壳聚糖支架与NSCs共培养的扫描电子显微镜图像;NSCs:神经干细胞
图4 4组大鼠脊髓损伤后的运动功能评价
图5 4组大鼠脊髓损伤后8周的电生理分析结果A:运动诱发电位的典型图像;B:体感诱发电位的典型图像比较;C:运动诱发电位和体感诱发电位的振幅比较;D:运动诱发电位和体感诱发电位的潜伏期比较;与模型组比较,aP<0.05;与3D打印支架组比较,bP<0.05
图6 4组大鼠脊髓损伤后8周的脊髓弥散张量纤维束成像图像
[28]
Rao SB, Sharma CP. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential[J]. J Biomed Mater Res, 1997, 34(1): 21-28.
[29]
Montembault A, Tahiri K, Korwin-Zmijowska C, et al. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering[J]. Biochimie, 2006, 88(5): 551-564.
[30]
Ladet SG, Tahiri K, Montembault AS, et al. Multi-membrane chitosan hydrogels as chondrocytic cell bioreactors[J]. Biomaterials, 2011, 32(23): 5354-5364.
[31]
杨飞祥,张皑峰,郝鹏,等. 神经营养因子3-壳聚糖载体对大鼠运动皮层损伤后内源性神经发生和运动功能的效果[J]. 中国康复理论与实践, 2017, 23(2): 155-161.
[32]
Boyce VS, Tumolo M, Fischer I, et al. Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats[J]. J Neurophysiol, 2007, 98(4): 1988-1996.
[33]
Elliott Donaghue I, Tator CH, Shoichet MS. Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord[J]. Biomater Sci, 2015, 3(1): 65-72.
[34]
Vavrek R, Girgis J, Tetzlaff W, et al. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats[J]. Brain, 2006, 129(Pt 6): 1534-1545.
[35]
Lynskey JV, Sandhu FA, Dai HN, et al. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats[J]. J Neurotrauma, 2006, 23(5): 617-634.
[36]
Tan Y, Richards DJ, Trusk TC, et al. 3D printing facilitated scaffold-free tissue unit fabrication[J]. Biofabrication, 2014, 6(2): 024111.
[37]
Inzana JA, Olvera D, Fuller SM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration[J]. Biomaterials, 2014, 35(13): 4026-4034.
[38]
Rosenzweig DH, Carelli E, Steffen T, et al. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration[J]. Int J Mol Sci, 2015, 16(7): 15118-15135.
[39]
Lu P, Wang Y, Graham L, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury[J]. Cell, 2012, 150(6): 1264-1273.
[1]
Rao JS, Zhao C, Zhang A, et al. NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury[J]. Proc Natl Acad Sci USA, 2018, 115(24): E5595-E5604.
[2]
Li X, Liu D, Xiao Z, et al. Scaffold-facilitated locomotor improvement post complete spinal cord injury: motor axon regeneration versus endogenous neuronal relay formation[J]. Biomaterials, 2019, 197: 20-31.
[3]
宋晓晖,于泰隆,陈滨晖,等. 曲克芦丁脑蛋白水解物对大鼠脊髓损伤后神经功能保护与修复研究[J]. 中华神经创伤外科电子杂志, 2018, 4(6): 357-362.
[4]
赵继宗. 脊髓损伤再生修复及临床转化研究[J]. 中华脑科疾病与康复杂志(电子版), 2019, 9(3): 129-131.
[5]
Wang KC, Koprivica V, Kim JA, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth[J]. Nature, 2002, 417(6892): 941-944.
[6]
Yang Z, Zhang A, Duan H, et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury[J]. Proc Natl Acad Sci USA, 2015, 112(43): 13354-13359.
[7]
Chen C, Zhao ML, Zhang RK, et al. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats[J]. J Biomed Mater Res A, 2017, 105(5): 1324-1332.
[8]
Hu Y, Zhang F, Zhong W, et al. Transplantation of neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promotes the repair of spinal cord injury[J]. J Mater Chem B, 2019, 7(47): 7525-7539.
[9]
Li G, Che MT, Zhang K, et al. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury[J]. Biomaterials, 2016, 83: 233-248.
[10]
Limongi T, Rocchi A, Cesca F, et al. Delivery of brain-derived neurotrophic factor by 3D biocompatible polymeric scaffolds for neural tissue engineering and neuronal regeneration[J]. Mol Neurobiol, 2018, 55(12): 8788-8798.
[11]
Xie Y, Song W, Zhao W, et al. Application of the sodium hyaluronate-CNTF scaffolds in repairing adult rat spinal cord injury and facilitating neural network formation[J]. Sci China Life Sci, 2018, 61(5): 559-568.
[12]
Oudega M, Hao P, Shang J, et al. Validation study of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord[J]. Exp Neurol, 2019, 312: 51-62.
[13]
Sun Y, Yang C, Zhu X, et al. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury[J]. J Biomed Mater Res A, 2019, 107(9): 1898-1908.
[14]
Liu XY, Liang J, Wang Y, et al. Diffusion tensor imaging predicting neurological repair of spinal cord injury with transplanting collagen/chitosan scaffold binding bFGF[J]. J Mater Sci Mater Med, 2019, 30(11): 123.
[15]
Li G, Che MT, Zeng X, et al. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury[J]. J Biomed Mater Res A, 2018, 106(8): 2158-2170.
[16]
Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats[J]. J Neurotrauma, 1995, 12(1): 1-21.
[17]
Assinck P, Duncan GJ, Hilton BJ, et al. Cell transplantation therapy for spinal cord injury[J]. Nat Neurosci, 2017, 20(5): 637-647.
[18]
Siebert JR, Eade AM, Osterhout DJ. Biomaterial approaches to enhancing neurorestoration after spinal cord injury: strategies for overcoming inherent biological obstacles[J]. Biomed Res Int, 2015, 2015: 752572.
[19]
Haggerty AE, Oudega M. Biomaterials for spinal cord repair[J]. Neurosci Bull, 2013, 29(4): 445-459.
[20]
Lai BQ, Che MT, Du BL, et al. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord[J]. Biomaterials, 2016, 109: 40-54.
[21]
Maquet V, Martin D, Scholtes F, et al. Poly(D,L-lactide) foams modified by poly(ethylene oxide)-block-poly(D,L-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration[J]. Biomaterials, 2001, 22(10): 1137-1146.
[22]
Evans GR, Brandt K, Niederbichler AD, et al. Clinical long-term in vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration[J]. J Biomater Sci Polym Ed, 2000, 11(8): 869-878.
[23]
Kaneko A, Matsushita A, Sankai Y. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats[J]. Biomed Mater, 2015, 10(1): 015008.
[24]
Bajaj P, Schweller RM, Khademhosseini A, et al. 3D biofabrication strategies for tissue engineering and regenerative medicine[J]. Annu Rev Biomed Eng, 2014, 16: 247-276.
[25]
Wang J, Yang Q, Cheng N, et al. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair[J]. Mater Sci Eng C Mater Biol Appl, 2016, 61: 705-711.
[26]
Schmidt T, Stachon S, Mack A, et al. Evaluation of a thin and mechanically stable collagen cell carrier[J]. Tissue Eng Part C Methods, 2011, 17(12): 1161-1170.
[27]
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials[J]. Lancet, 2005, 365(9472): 1687-1717.
[1] 刘虹宏, 杨永红, 张冬花, 林运. 老年冠脉分叉病变主支支架植入后在损伤边支使用药物涂层球囊进行修复的临床研究[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 387-393.
[2] 刘竹影, 周年苟, 李泳祺, 周丽斌. 空心环钻联合手术导板用于自体牙移植牙槽窝备洞[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 418-423.
[3] 张辉, 蔡敏, 黄湘雅. 数字化技术和人工智能在上颌窦底提升术的临床应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 244-252.
[4] 张海涛, 康婵娟, 翟静洁. 胰管支架置入治疗急性胆源性胰腺炎效果观察[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 654-657.
[5] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[6] 张翼飞, 郭强, 赖华健, 钟文文, 叶雷, 马波, 瞿虎, 尧冰, 邱剑光, 王德娟. 加速康复外科在儿童尿道下裂围术期的应用效果分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 367-371.
[7] 张升敏, 黄健斌, 陈亮, 马克强. Ⅰ、Ⅲ型胶原蛋白在成人腹股沟斜疝及直疝患者腹横筋膜和疝囊的表达[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 516-521.
[8] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[9] 金浪, 石洁, 黄正, 贾永伟, 张建坡, 魏礼成, 金昊雷. 3D打印数字技术辅助改良交叉PVP对重度骨质疏松性椎体压缩骨折脊柱-骨盆矢状面平衡状态的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 263-268.
[10] 梁慧, 林明慧. 个体情景训练在肌张力低下型脑瘫患儿康复的应用研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 309-314.
[11] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
[12] 吴佳霖, 罗骏阳, 钟胜, 王有枝, 姜在波. 肝内小直径覆膜支架联合抽栓、溶栓治疗门静脉血栓二例[J]. 中华介入放射学电子杂志, 2023, 11(04): 377-379.
[13] 许少睿, 孔杰, 马骏, 尚金林, 苏浩波. 西门子Artis Zee系列神经介入术专属透视策略的创建与应用[J]. 中华介入放射学电子杂志, 2023, 11(04): 318-323.
[14] 袁畅, 李志刚. 胸部恶性肿瘤相关气管食管瘘的诊治进展[J]. 中华胸部外科电子杂志, 2023, 10(04): 241-246.
[15] 陆东生, 桂建康, 范衍, 刘春林, 李祉岑, 宫崧峰. 复合手术治疗椎动脉慢性闭塞一例[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 386-393.
阅读次数
全文


摘要