[28] |
Rao SB, Sharma CP. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential[J]. J Biomed Mater Res, 1997, 34(1): 21-28.
|
[29] |
Montembault A, Tahiri K, Korwin-Zmijowska C, et al. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering[J]. Biochimie, 2006, 88(5): 551-564.
|
[30] |
Ladet SG, Tahiri K, Montembault AS, et al. Multi-membrane chitosan hydrogels as chondrocytic cell bioreactors[J]. Biomaterials, 2011, 32(23): 5354-5364.
|
[31] |
杨飞祥,张皑峰,郝鹏,等. 神经营养因子3-壳聚糖载体对大鼠运动皮层损伤后内源性神经发生和运动功能的效果[J]. 中国康复理论与实践, 2017, 23(2): 155-161.
|
[32] |
Boyce VS, Tumolo M, Fischer I, et al. Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats[J]. J Neurophysiol, 2007, 98(4): 1988-1996.
|
[33] |
Elliott Donaghue I, Tator CH, Shoichet MS. Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord[J]. Biomater Sci, 2015, 3(1): 65-72.
|
[34] |
Vavrek R, Girgis J, Tetzlaff W, et al. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats[J]. Brain, 2006, 129(Pt 6): 1534-1545.
|
[35] |
Lynskey JV, Sandhu FA, Dai HN, et al. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats[J]. J Neurotrauma, 2006, 23(5): 617-634.
|
[36] |
Tan Y, Richards DJ, Trusk TC, et al. 3D printing facilitated scaffold-free tissue unit fabrication[J]. Biofabrication, 2014, 6(2): 024111.
|
[37] |
Inzana JA, Olvera D, Fuller SM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration[J]. Biomaterials, 2014, 35(13): 4026-4034.
|
[38] |
Rosenzweig DH, Carelli E, Steffen T, et al. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration[J]. Int J Mol Sci, 2015, 16(7): 15118-15135.
|
[39] |
Lu P, Wang Y, Graham L, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury[J]. Cell, 2012, 150(6): 1264-1273.
|
[1] |
Rao JS, Zhao C, Zhang A, et al. NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury[J]. Proc Natl Acad Sci USA, 2018, 115(24): E5595-E5604.
|
[2] |
Li X, Liu D, Xiao Z, et al. Scaffold-facilitated locomotor improvement post complete spinal cord injury: motor axon regeneration versus endogenous neuronal relay formation[J]. Biomaterials, 2019, 197: 20-31.
|
[3] |
宋晓晖,于泰隆,陈滨晖,等. 曲克芦丁脑蛋白水解物对大鼠脊髓损伤后神经功能保护与修复研究[J]. 中华神经创伤外科电子杂志, 2018, 4(6): 357-362.
|
[4] |
赵继宗. 脊髓损伤再生修复及临床转化研究[J]. 中华脑科疾病与康复杂志(电子版), 2019, 9(3): 129-131.
|
[5] |
Wang KC, Koprivica V, Kim JA, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth[J]. Nature, 2002, 417(6892): 941-944.
|
[6] |
Yang Z, Zhang A, Duan H, et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury[J]. Proc Natl Acad Sci USA, 2015, 112(43): 13354-13359.
|
[7] |
Chen C, Zhao ML, Zhang RK, et al. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats[J]. J Biomed Mater Res A, 2017, 105(5): 1324-1332.
|
[8] |
Hu Y, Zhang F, Zhong W, et al. Transplantation of neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promotes the repair of spinal cord injury[J]. J Mater Chem B, 2019, 7(47): 7525-7539.
|
[9] |
Li G, Che MT, Zhang K, et al. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury[J]. Biomaterials, 2016, 83: 233-248.
|
[10] |
Limongi T, Rocchi A, Cesca F, et al. Delivery of brain-derived neurotrophic factor by 3D biocompatible polymeric scaffolds for neural tissue engineering and neuronal regeneration[J]. Mol Neurobiol, 2018, 55(12): 8788-8798.
|
[11] |
Xie Y, Song W, Zhao W, et al. Application of the sodium hyaluronate-CNTF scaffolds in repairing adult rat spinal cord injury and facilitating neural network formation[J]. Sci China Life Sci, 2018, 61(5): 559-568.
|
[12] |
Oudega M, Hao P, Shang J, et al. Validation study of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord[J]. Exp Neurol, 2019, 312: 51-62.
|
[13] |
Sun Y, Yang C, Zhu X, et al. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury[J]. J Biomed Mater Res A, 2019, 107(9): 1898-1908.
|
[14] |
Liu XY, Liang J, Wang Y, et al. Diffusion tensor imaging predicting neurological repair of spinal cord injury with transplanting collagen/chitosan scaffold binding bFGF[J]. J Mater Sci Mater Med, 2019, 30(11): 123.
|
[15] |
Li G, Che MT, Zeng X, et al. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury[J]. J Biomed Mater Res A, 2018, 106(8): 2158-2170.
|
[16] |
Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats[J]. J Neurotrauma, 1995, 12(1): 1-21.
|
[17] |
Assinck P, Duncan GJ, Hilton BJ, et al. Cell transplantation therapy for spinal cord injury[J]. Nat Neurosci, 2017, 20(5): 637-647.
|
[18] |
Siebert JR, Eade AM, Osterhout DJ. Biomaterial approaches to enhancing neurorestoration after spinal cord injury: strategies for overcoming inherent biological obstacles[J]. Biomed Res Int, 2015, 2015: 752572.
|
[19] |
Haggerty AE, Oudega M. Biomaterials for spinal cord repair[J]. Neurosci Bull, 2013, 29(4): 445-459.
|
[20] |
Lai BQ, Che MT, Du BL, et al. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord[J]. Biomaterials, 2016, 109: 40-54.
|
[21] |
Maquet V, Martin D, Scholtes F, et al. Poly(D,L-lactide) foams modified by poly(ethylene oxide)-block-poly(D,L-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration[J]. Biomaterials, 2001, 22(10): 1137-1146.
|
[22] |
Evans GR, Brandt K, Niederbichler AD, et al. Clinical long-term in vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration[J]. J Biomater Sci Polym Ed, 2000, 11(8): 869-878.
|
[23] |
Kaneko A, Matsushita A, Sankai Y. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats[J]. Biomed Mater, 2015, 10(1): 015008.
|
[24] |
Bajaj P, Schweller RM, Khademhosseini A, et al. 3D biofabrication strategies for tissue engineering and regenerative medicine[J]. Annu Rev Biomed Eng, 2014, 16: 247-276.
|
[25] |
Wang J, Yang Q, Cheng N, et al. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair[J]. Mater Sci Eng C Mater Biol Appl, 2016, 61: 705-711.
|
[26] |
Schmidt T, Stachon S, Mack A, et al. Evaluation of a thin and mechanically stable collagen cell carrier[J]. Tissue Eng Part C Methods, 2011, 17(12): 1161-1170.
|
[27] |
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials[J]. Lancet, 2005, 365(9472): 1687-1717.
|