[1] |
Vespa P. Traumatic brain injury is a longitudinal disease process[J]. Curr Opin Neurol, 2017, 30(6): 563-564.
|
[2] |
张小军,段海真,姜栩恒,等.创伤性脑损伤与机体免疫的关系研究进展[J].国际神经病学神经外科学杂志, 2018, 45(3): 97-101.
|
[3] |
Gaetz M. The neurophysiology of brain injury[J]. Clin Neurophysiol, 2004, 115(1): 4-18.
|
[4] |
Miller RJ. The control of neuronal Ca2+ homeostasis[J]. Prog Neurobiol, 1991, 37(3): 255-285.
|
[5] |
Young W. Role of calcium in central nervous system injuries[J]. J Neurotrauma, 1992, 9 Suppl 1: S9-S25.
|
[6] |
Krebs J, Agellon LB, Michalak M. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling[J]. Biochem Biophys Res Commun, 2015, 460(1): 114-121.
|
[7] |
Magi S, Castaldo P, Macrì ML, et al. Intracellular calcium dysregulation: implications for alzheimer’s disease[J]. Biomed Res Int, 2016, 2016: 6701324.
|
[8] |
Luo P, Li X, Wu X, et al. Preso regulates NMDA receptor-mediated excitotoxicity via modulating nitric oxide and calcium responses after traumatic brain injury[J]. Cell Death Dis, 2019, 10(7): 496.
|
[9] |
Takahashi T, Momiyama A. Different types of calcium channels mediate central synaptic transmission[J]. Nature, 1993, 366(6451): 156-158.
|
[10] |
Hansen KB, Yi F, Perszyk RE, et al. Structure, function, and allosteric modulation of NMDA receptors[J]. J Gen Physiol, 2018, 150(8): 1081-1105.
|
[11] |
Bahar E, Kim H, Yoon H. ER stress-mediated signaling: action potential and Ca(2+) as key players[J]. Int J Mol Sci, 2016, 17(9): pii E1558.
|
[12] |
Szymański J, Janikiewicz J, Michalska B, et al. Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure[J]. Int J Mol Sci, 2017, 18(7): pii E1576.
|
[13] |
Trump BF, Berezesky IK. The role of altered [Ca2+]i regulation in apoptosis, oncosis, and necrosis[J]. Biochim Biophys Acta, 1996, 1313(3): 173-178.
|
[14] |
Sorby-Adams AJ, Marcoionni AM, Dempsey ER, et al. The role of neurogenic inflammation in blood-brain barrier disruption and development of cerebral oedema following acute central nervous system (CNS) injury[J]. Int J Mol Sci, 2017, 18(8): pii E1788.
|
[15] |
Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage[J]. Ann Neurol, 1986, 19(2): 105-111.
|
[16] |
Hollmann M, Hartley M, Heinemann S. Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition[J]. Science, 1991, 252(5007): 851-853.
|
[17] |
Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury[J]. Curr Neuropharmacol, 2018, 16(8): 1224-1238.
|
[18] |
Dorsett CR, McGuire JL, DePasquale EA. Glutamate neurotransmission in rodent models of traumatic brain injury[J]. J Neurotrauma, 2017, 34(2): 263-272.
|
[19] |
Yokobori S, Mazzeo AT, Gajavelli S, et al. Mitochondrial neuroprotection in traumatic brain injury: rationale and therapeutic strategies[J]. CNS Neurol Disord Drug Targets, 2014, 13(4): 606-619.
|
[20] |
Zhou Z, Austin GL, Young LEA, et al. Mitochondrial metabolism in major neurological diseases[J]. Cells, 2018, 7(12): pii E229.
|
[21] |
Slemmer JE, Shacka JJ, Sweeney MI, et al. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging[J]. Curr Med Chem, 2008, 15(4): 404-414.
|
[22] |
Xia Y, Dawson VL, Dawson TM, et al. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury[J]. Proc Natl Acad Sci USA, 1996, 93(13): 6770-6774.
|
[23] |
Kozlov AV, Bahrami S, Redl H, et al. Alterations in nitric oxide homeostasis during traumatic brain injury[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(10 Pt B): 2627-2632.
|
[24] |
Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders[J]. Neurol Res, 2016, 39(1): 73-82.
|
[25] |
Saatman KE, Bozyczko-Coyne D, Marcy V, et al. Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat[J]. J Neuropathol Exp Neurol, 1996, 55(7): 850-860.
|
[26] |
Mcginn MJ, Kelley BJ, Akinyi L, et al. Biochemical, structural, and biomarker evidence for calpain-mediated cytoskeletal change after diffuse brain injury uncomplicated by contusion[J]. J Neuropathol Exp Neurol, 2009, 68(3): 241-249.
|
[27] |
Rubenstein R, Wang KK, Chiu A, et al. PrPC expression and calpain activity independently mediate the effects of closed head injury in mice[J]. Behav Brain Res, 2018, 340: 29-40.
|
[28] |
Wang KK, Yang Z, Zhu T, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury[J]. Expert Rev Mol Diagn, 2018, 18(2): 165-180.
|
[29] |
Panahi Y, Mojtahedzadeh M, Najafi A, et al. The role of magnesium sulfate in the intensive care unit[J]. EXCLI J, 2017, 16: 464-482.
|
[30] |
Xiong Y, Zhang Y, Mahmood A, et al., Investigational agents for treatment of traumatic brain injury[J]. Expert Opin Investig Drugs, 2015, 24(6): 743-760.
|
[31] |
牛力军,张鹏,吴翠莹,等.靶向抑制frizzled-2对脑损伤后wnt5a/Ca~(2+)介导的神经细胞钙超载的抑制性研究(英文)[J].中华神经创伤外科电子杂志, 2015, 1(1): 28-33.
|
[32] |
Zhang L, Wang H, Zhou X, et al. Role of mitochondrial calcium uniporter-mediated Ca2+ and iron accumulation in traumatic brain injury[J]. J Cell Mol Med, 2019, 23(4): 2995-3009.
|
[33] |
Abdoli A, Rahimi-Bashar F, Torabian S, et al. Efficacy of simultaneous administration of nimodipine, progesterone, and magnesium sulfate in patients with severe traumatic brain injury: a randomized controlled trial[J]. Bull Emerg Trauma, 2019, 7(2): 124-129.
|