切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2019, Vol. 05 ›› Issue (06) : 373 -376. doi: 10.3877/cma.j.issn.2095-9141.2019.06.012

所属专题: 文献

综述

钙离子在创伤性脑损伤中的致病机制研究
严智1, 赵天全1, 王恩任1,()   
  1. 1. 610500 成都,成都医学院第一附属医院神经外科
  • 收稿日期:2019-05-14 出版日期:2019-12-15
  • 通信作者: 王恩任

Pathogenic mechanism of calciumion in traumatic brain injury

Zhi Yan1, Tianquan Zhao1, Enren Wang1,()   

  1. 1. Department of Neurosurgery, First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
  • Received:2019-05-14 Published:2019-12-15
  • Corresponding author: Enren Wang
  • About author:
    Corresponding author: Wang Enren, Email:
引用本文:

严智, 赵天全, 王恩任. 钙离子在创伤性脑损伤中的致病机制研究[J]. 中华神经创伤外科电子杂志, 2019, 05(06): 373-376.

Zhi Yan, Tianquan Zhao, Enren Wang. Pathogenic mechanism of calciumion in traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2019, 05(06): 373-376.

创伤性脑损伤(TBI)是一类常见且严重威胁公众健康的疾病,国内外对TBI发病机制和治疗方面的研究都有了巨大突破。通过对国内外文献研究发现,TBI后所致神经损害包括原发性和继发性损伤两大类机制,而钙离子(Ca2+)在TBI继发性损伤中扮演着极其重要的角色。本文围绕Ca2+在TBI后继发性损害的致病机制及其治疗展望综述如下。

Traumatic brain injury (TBI) is a common disease and poses a serious threat to public health. At home and abroad, there have been great breakthroughs in the pathogenesis and treatment of TBI. Through the study of literature research at home and abroad, it is found that the neurological damage caused by TBI includes two major mechanisms of primary and secondary injury. Ca2+ plays an important role in the secondary injury of TBI. This review focuses on the pathogenesis and treatment of Ca2+ secondary damage after TBI.

[1]
Vespa P. Traumatic brain injury is a longitudinal disease process[J]. Curr Opin Neurol, 2017, 30(6): 563-564.
[2]
张小军,段海真,姜栩恒,等.创伤性脑损伤与机体免疫的关系研究进展[J].国际神经病学神经外科学杂志, 2018, 45(3): 97-101.
[3]
Gaetz M. The neurophysiology of brain injury[J]. Clin Neurophysiol, 2004, 115(1): 4-18.
[4]
Miller RJ. The control of neuronal Ca2+ homeostasis[J]. Prog Neurobiol, 1991, 37(3): 255-285.
[5]
Young W. Role of calcium in central nervous system injuries[J]. J Neurotrauma, 1992, 9 Suppl 1: S9-S25.
[6]
Krebs J, Agellon LB, Michalak M. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling[J]. Biochem Biophys Res Commun, 2015, 460(1): 114-121.
[7]
Magi S, Castaldo P, Macrì ML, et al. Intracellular calcium dysregulation: implications for alzheimer’s disease[J]. Biomed Res Int, 2016, 2016: 6701324.
[8]
Luo P, Li X, Wu X, et al. Preso regulates NMDA receptor-mediated excitotoxicity via modulating nitric oxide and calcium responses after traumatic brain injury[J]. Cell Death Dis, 2019, 10(7): 496.
[9]
Takahashi T, Momiyama A. Different types of calcium channels mediate central synaptic transmission[J]. Nature, 1993, 366(6451): 156-158.
[10]
Hansen KB, Yi F, Perszyk RE, et al. Structure, function, and allosteric modulation of NMDA receptors[J]. J Gen Physiol, 2018, 150(8): 1081-1105.
[11]
Bahar E, Kim H, Yoon H. ER stress-mediated signaling: action potential and Ca(2+) as key players[J]. Int J Mol Sci, 2016, 17(9): pii E1558.
[12]
Szymański J, Janikiewicz J, Michalska B, et al. Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure[J]. Int J Mol Sci, 2017, 18(7): pii E1576.
[13]
Trump BF, Berezesky IK. The role of altered [Ca2+]i regulation in apoptosis, oncosis, and necrosis[J]. Biochim Biophys Acta, 1996, 1313(3): 173-178.
[14]
Sorby-Adams AJ, Marcoionni AM, Dempsey ER, et al. The role of neurogenic inflammation in blood-brain barrier disruption and development of cerebral oedema following acute central nervous system (CNS) injury[J]. Int J Mol Sci, 2017, 18(8): pii E1788.
[15]
Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage[J]. Ann Neurol, 1986, 19(2): 105-111.
[16]
Hollmann M, Hartley M, Heinemann S. Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition[J]. Science, 1991, 252(5007): 851-853.
[17]
Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury[J]. Curr Neuropharmacol, 2018, 16(8): 1224-1238.
[18]
Dorsett CR, McGuire JL, DePasquale EA. Glutamate neurotransmission in rodent models of traumatic brain injury[J]. J Neurotrauma, 2017, 34(2): 263-272.
[19]
Yokobori S, Mazzeo AT, Gajavelli S, et al. Mitochondrial neuroprotection in traumatic brain injury: rationale and therapeutic strategies[J]. CNS Neurol Disord Drug Targets, 2014, 13(4): 606-619.
[20]
Zhou Z, Austin GL, Young LEA, et al. Mitochondrial metabolism in major neurological diseases[J]. Cells, 2018, 7(12): pii E229.
[21]
Slemmer JE, Shacka JJ, Sweeney MI, et al. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging[J]. Curr Med Chem, 2008, 15(4): 404-414.
[22]
Xia Y, Dawson VL, Dawson TM, et al. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury[J]. Proc Natl Acad Sci USA, 1996, 93(13): 6770-6774.
[23]
Kozlov AV, Bahrami S, Redl H, et al. Alterations in nitric oxide homeostasis during traumatic brain injury[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(10 Pt B): 2627-2632.
[24]
Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders[J]. Neurol Res, 2016, 39(1): 73-82.
[25]
Saatman KE, Bozyczko-Coyne D, Marcy V, et al. Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat[J]. J Neuropathol Exp Neurol, 1996, 55(7): 850-860.
[26]
Mcginn MJ, Kelley BJ, Akinyi L, et al. Biochemical, structural, and biomarker evidence for calpain-mediated cytoskeletal change after diffuse brain injury uncomplicated by contusion[J]. J Neuropathol Exp Neurol, 2009, 68(3): 241-249.
[27]
Rubenstein R, Wang KK, Chiu A, et al. PrPC expression and calpain activity independently mediate the effects of closed head injury in mice[J]. Behav Brain Res, 2018, 340: 29-40.
[28]
Wang KK, Yang Z, Zhu T, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury[J]. Expert Rev Mol Diagn, 2018, 18(2): 165-180.
[29]
Panahi Y, Mojtahedzadeh M, Najafi A, et al. The role of magnesium sulfate in the intensive care unit[J]. EXCLI J, 2017, 16: 464-482.
[30]
Xiong Y, Zhang Y, Mahmood A, et al., Investigational agents for treatment of traumatic brain injury[J]. Expert Opin Investig Drugs, 2015, 24(6): 743-760.
[31]
牛力军,张鹏,吴翠莹,等.靶向抑制frizzled-2对脑损伤后wnt5a/Ca~(2+)介导的神经细胞钙超载的抑制性研究(英文)[J].中华神经创伤外科电子杂志, 2015, 1(1): 28-33.
[32]
Zhang L, Wang H, Zhou X, et al. Role of mitochondrial calcium uniporter-mediated Ca2+ and iron accumulation in traumatic brain injury[J]. J Cell Mol Med, 2019, 23(4): 2995-3009.
[33]
Abdoli A, Rahimi-Bashar F, Torabian S, et al. Efficacy of simultaneous administration of nimodipine, progesterone, and magnesium sulfate in patients with severe traumatic brain injury: a randomized controlled trial[J]. Bull Emerg Trauma, 2019, 7(2): 124-129.
[1] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[2] 王建鹏, 廖勇仕, 丁文聪, 李冲, 陈锐. lncRNA在创伤性脑损伤中的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 365-370.
[3] 崔刚, 王德亮, 付茂武, 田璧铭, 王莹, 段虎斌. 创伤性脑损伤后鼠脑内RHO/ROCK信号通路与神经炎症反应及病理性损伤关系的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 324-328.
[4] 傅世龙, 王国锋, 侯鹏伟, 袁邦清, 魏梁锋, 王守森. 颅脑创伤患者术后再次开颅清除对侧血肿的影响因素分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 287-292.
[5] 程俊凯, 罗耀文, 李娟, 张磊, 杨淑涵, 王彦刚. 重复经颅磁刺激上调DJ-1表达改善小鼠创伤性脑损伤后功能障碍的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 261-268.
[6] 崔刚, 肖友朝, 王欢, 田璧铭, 王莹, 段虎斌. RHO/ROCK信号通路对创伤性脑损伤后颅内神经系统微环境的影响[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 204-208.
[7] 王鸿, 高俊宏, 卢青, 刘进仁, 范小琳, 李亮, 马宁, 王琪. 基于CiteSpace的创伤性脑损伤研究文献计量学分析[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 141-149.
[8] 齐洪武, 刘岩松, 曾维俊, 张立钊, 郭洪均, 刘清石. 儿童创伤性脑损伤的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 121-124.
[9] 崔大勇, 王新, 张博. 小胶质细胞在颅脑损伤中免疫调控及对神经元的作用机制[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 56-58.
[10] 毕万达, 刘阳珷玥, 戴双双. 载脂蛋白E在创伤性脑损伤中作用及机制的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 51-55.
[11] 余鹏飞, 麦兴进, 符树强, 苏保寿, 吴益敏, 喻闻庆. 血清sTREM-1、IL-12及IL-33水平对创伤性脑损伤严重程度和预后评估的价值[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 18-22.
[12] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[13] 韩道旭, 王勉, 王艺璇, 韩晓云, 李春晓. 妊娠期高血压疾病患者血清Ca2+、25-羟维生素D、D-二聚体水平变化及临床意义[J]. 中华临床医师杂志(电子版), 2023, 17(01): 43-47.
[14] 谢艾伦, 郑冬燕, 蔡紫薇, 卢仁建, 彭永明, 张贺, 陈家隆. 鱼藤酮通过降低线粒体钙离子单向转运体蛋白表达促进多巴胺能神经元铁死亡[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 71-78.
[15] 吴敏, 潘鑫, 王忻, 邱晨, 陈伟, 顾慧. 镇江市院前救治的创伤性脑损伤患者特征分析[J]. 中华卫生应急电子杂志, 2022, 08(01): 18-21.
阅读次数
全文


摘要