切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2015, Vol. 01 ›› Issue (01) : 7 -10. doi: 10.3877/cma.j.issn.2095-9141.2015.01.003

基础研究

大鼠中度液压颅脑损伤后氧化应激反应实验研究
林恒州1,2, 张猛2, 陈保东2, 黄贤键2, 张秋生2, 纪涛2, 何毅2, 李维平2,()   
  1. 1.510182 广州,广州医科大学
    2.518035 深圳,深圳巿第二人民医院神经外科
  • 收稿日期:2014-12-01 出版日期:2015-02-15
  • 通信作者: 李维平
  • 基金资助:
    深圳巿协同创新科技计划国际合作研究项目(20120608210932744)

Experimental study on oxidative stress in rats after moderate fluid-percussion brain injury

Hengzhou Lin1,2, Meng Zhang2, Baodong Chen2, Xianjian Huang2, Qiusheng Zhang2, Tao Ji2, Yi He2, Weiping Li2,()   

  1. 1.Guangzhou Medical University, Guangzhou 510182, China
    2.Department of Neurosurgery,The Second People’s Hospital of Shenzhen,Shenzhen 518037,China
  • Received:2014-12-01 Published:2015-02-15
  • Corresponding author: Weiping Li
引用本文:

林恒州, 张猛, 陈保东, 黄贤键, 张秋生, 纪涛, 何毅, 李维平. 大鼠中度液压颅脑损伤后氧化应激反应实验研究[J]. 中华神经创伤外科电子杂志, 2015, 01(01): 7-10.

Hengzhou Lin, Meng Zhang, Baodong Chen, Xianjian Huang, Qiusheng Zhang, Tao Ji, Yi He, Weiping Li. Experimental study on oxidative stress in rats after moderate fluid-percussion brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2015, 01(01): 7-10.

目的

探讨中度颅脑液压损伤(TBI)大鼠模型生化指标脂质氧化终产物丙二醛(MDA)及抗氧化剂谷胱甘肽(GSH)含量相关指标的变化,并探讨其与继发性脑损伤间的关系。

方法

将雄性Sprague-Dawley 大鼠48 只按随机数字表法分成中度颅脑损伤(mTBI)组和假手术(Sham-TBI)组,每组24 只。以液压中度TBI 指标致伤mTBI 组,并于伤后6 h、24 h 处死大鼠,通过ELISA免疫酶技术测定抗氧化剂GSH和脂质氧化产物MDA在2组的不同表达,评价大鼠颅脑创伤后的氧化应激损伤。应用SPSS 19.0统计软件,对两组的GSH和MDA浓度比较采用独立样本t检验。

结果

mTBI组脑组织见挫伤灶及蛛网膜下腔出血,HE染色后可见神经元损伤核固缩,细胞坏死呈空泡状,而Sham-TBI 组未见神经元损伤表现。TBI 后mTBI 组中的MDA 浓度较Sham-TBI 组显著升高[6 h 时分别为(8.34±2.03)μg/g 和(3.92±1.20)μg/g,t=6.493,P=0.000],随伤后时间的延长,MDA 的浓度显著升高[24 h 时分别为(12.74±2.44)μg/g 和(3.96±1.18)μg/g,t=11.222,P=0.000];而TBI 后mTBI 组GSH 浓度显著低于Sham-TBI 组[6 h 时分别为(2.65±0.63)μg/g 和(4.90±0.56)μg/g,t=9.247,P=0.000],随伤后时间的延长,GSH 的浓度显著降低[24 h 时分别为(2.20±0.62)μg/g 和(4.88±0.55)μg/g;t=11.202,P=0.000]。

结论

液压TBI 模型致伤能量能够测量,中度闭合性颅脑外伤可导致脑组织病理学改变和氧化应激损伤,且氧化应激损伤指标与脑损伤时间呈正相关,外伤后早期阻断氧化应激过程可能起到脑保护作用。

Objective

To study the change of biochemical index of malondialdehyde (MDA)and glutathione(GSH)of moderate traumatic brain injury(TBI)rats model,which are the end products of lipid oxidation and antioxidant, respectively. To explore the relationship between these two chemicals and secondary brain injury.

Methods

48 adult male Sprague-Dawley rats were randomly assigned to 2 groups : moderate-TBI (mTBI, n=24) group and sham-TBI (sham, n=24) group.Hydraulic moderate TBI index was induced to mTBI group. The rats were killed 6 h and 24 h after injured respectively, the levels of MDA and GSH were examined by ELISA enzymictechnology to analyze the different expression among 2 groups and to evaluate the oxidative stress injury of the rats after traumatic brain injury. The data was analyzed by SPSS 19.0 statistical analysis software, the concentration of GSH and MDA among 2 groups was tested by independent-samples t Test.

Results

Brain contusion and subarachnoid hemorrhage could be observed in mTBI rats, in brain sections with HE staining, nuclear pyknosis and vesicular neurons could be detected. However, no similar injury could be found in sham group.The concentration of MDA in mTBI group was significantly higher than that in sham group (in 6 h, level of mTBI 8.34±2.03μg/g, level of sham 3.92±1.20μg/g, t=6.493,P=0.000), and the concentration displayed a significant upregulated trend as time went by post TBI (in 24 h, level of mTBI 12.74±2.44μg/g, level of sham 3.96±1.18μg/g, t=11.222, P=0.000). The concentration of GSH in mTBI group was significantly lower than that in sham group (in 6 h, level of mTBI 2.65±0.63μg/g, level of sham 4.90±0.56μg/g, t=9.247, P=0.000), and the concentration displayed a significant downtrend as time went by post TBI (in 24 h, level of mTBI 2.20±0.62μg/g,level of sham 4.88±0.55μg/g, t=11.202, P=0.000).

Conclusions

The injury level of hydraulic TBI model can be evaluated,moderate closed brain trauma resulted in brain tissue pathological changes and oxidative stress injury.The index of oxidative stress was correlated with the injury period.Blockage of the process of the oxidative stress in the early stage post TBI may play an important role in neuroprotective effect.

图1 脑损伤大鼠脑组织病理切片(HE染色×50) 注:A图提示中度损伤组脑实质内神经胶质细胞及组织间隙水肿,水肿带可见中性粒细胞积聚;B图示假损伤组脑细胞染色均匀,脑组织结构正常,未见炎性细胞浸润
Fig.1 Pathologic section of brain tissue of craniocerebral injury rats,HE staining
表1 不同浓度MDA及GSH的标准曲线数据
Tab.1 Standard curve data of MDA and GSH in different consistency
图2 丙二醛标准品线性回归曲线
Fig.2 Standard curve of malondialdehyde
图3 谷胱甘肽标准品线性回归曲线
Fig.3 Standard curve of glutathione
图4 脑损伤大鼠MDA检测结果
Fig.4 The results of MDA test of craniocerebral injury rats
图5 脑损伤大鼠GSH检测结果
Fig.5 The results of GSH test of craniocerebral injury rats
[1]
Petronilho F, Feier G, de Souza B, et al. Oxidative stress in brain according to traumatic brain injury intensity[J]. J Surg Res,2010,164(2):316-320.
[2]
Giza CC, Kolb B, Harris NG, et al. Hitting a moving target:Basic mechanisms of recovery from acquired developmental brain injury[J].Dev Neurorehabil,2009,12(5):255-268.
[3]
李国林,印大中.蛋白质羰基化与衰老[J].中国老年学杂志,2008,28(20):2070-2073.
[4]
Zheng J. An impaired 20S proteasome contributes to the accumulation of oxidized proteins in multiple sclerosis and its animal model[D].University of New Mexico,2010,17-18.
[5]
Smith SL,Andrus PK, Zhang JR, et al. Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat[J].Neurotrauma,1994,11(4):393-404.
[6]
Reed TT,Owen J,Pierce WM,et al.Proteomic identification of nitrated brain proteins in traumatic brain-injured rats treated postinjury with gamma- glutamylcysteine ethylester: insights into the role of elevation of glutathione as a potential therapeutic strategy for traumatic brain injury[J]. J Neurosci Res,2009,87(2):408-417.
[7]
Hall ED, Vaishnav RA, Mustafa AG.Antioxidant therapies for traumatic brain injury[J]. Neurotherapeutics,2010,7(1):51-61.
[1] 诸琴红, 夏典平, 葛芳娣, 崔大伟. 抗氧化和炎症指标在糖尿病肾病患者中的临床意义[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 307-311.
[2] 范会业, 毛杨, 王文静, 李德峰. 大蒜素改善博莱霉素诱导小鼠肺纤维化的作用分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 9-13.
[3] 从长春, 王春琳, 武孝刚, 王金标, 章福彬, 孙磊, 王李. 重型颅脑损伤患者呼吸机相关性肺炎的危险因素及病原学分析[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 151-157.
[4] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[5] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[6] 鹿海龙, 朱玉辐, 贺雪凤, 蔡廷江, 王栋, 朱圣玲, 张恩刚, 王策. 创伤性颅脑损伤二次手术的危险因素分析及预警模型构建[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 97-101.
[7] 李鑫, 刘炳辉, 程名, 王凡, 刘玉明, 周绍明. 基于Rotterdam CT评分评估的颅脑损伤术中控制性减压的临床应用价值[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 16-21.
[8] 刘彪, 巍山, 关永胜. 基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 22-27.
[9] 罗丹, 柏宋磊, 易峰. HMGB1-TLR2/TLR4/RAGE通路与颅脑损伤并发认知功能障碍病情变化的关系研究[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 28-34.
[10] 袁宝玉, 管义祥, 王东流, 陆正. 不同时机颅骨修补术治疗颅脑外伤的临床疗效[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 35-41.
[11] 沈汉超, 何炯周, 田君, 魏梁锋, 王守森. 老年重型颅脑损伤合并脑疝患者预后不良的危险因素分析[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 350-354.
[12] 聂玉金, 曹培成. 创伤性颅脑损伤患者保守治疗发生脑积水的危险因素分析[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 355-359.
[13] 张卓媛, 杨二万, 田志成, 包明冬, 罗鹏. 慢性创伤性脑病的研究新进展[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 360-366.
[14] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
[15] 李建, 张立, 高嵘, 倪海波, 宋照明, 陈周青, 王中. 创伤性脑血管损伤的识别和治疗[J]. 中华脑血管病杂志(电子版), 2023, 17(06): 596-603.
阅读次数
全文


摘要