切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2023, Vol. 09 ›› Issue (06) : 367 -371. doi: 10.3877/cma.j.issn.2095-9141.2023.06.009

综述

创伤性颅脑损伤神经生理学特征
唐春雨, 李倩, 郭姗姗, 叶奇, 张丹()   
  1. 300309 天津,武警特色医学中心烧伤冻伤及组织功能重建研究所
    100088 北京,火箭军特色医学中心中医科
    100088 北京,火箭军特色医学中心涉核人员治疗科
    100088 北京,火箭军特色医学中心护理部
    100088 北京,火箭军特色医学中心消化科
  • 收稿日期:2022-12-15 出版日期:2023-12-15
  • 通信作者: 张丹

Characteristic of neurobiology in traumatic brain injury

Chunyu Tang, Qian Li, Shanshan Guo, Qi Ye, Dan Zhang()   

  1. Research Institute of Burn Frostbite and Tissue Functional Reconstruction, Characteristic Medical Center of the PAP, Tianjin 300309, China
    Department of Traditional Chinese Medicine, Characteristic Medical Center of the PLA Rocket Force, Beijing 100088, China
    Department of Treatment for Nuclear Personnel, Characteristic Medical Center of the PLA Rocket Force, Beijing 100088, China
    Department of Nursing, Characteristic Medical Center of the PLA Rocket Force, Beijing 100088, China
    Department of Gastroenterology, Characteristic Medical Center of the PLA Rocket Force, Beijing 100088, China
  • Received:2022-12-15 Published:2023-12-15
  • Corresponding author: Dan Zhang
引用本文:

唐春雨, 李倩, 郭姗姗, 叶奇, 张丹. 创伤性颅脑损伤神经生理学特征[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 367-371.

Chunyu Tang, Qian Li, Shanshan Guo, Qi Ye, Dan Zhang. Characteristic of neurobiology in traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(06): 367-371.

创伤性颅脑损伤(TBI)是累及到大脑实质的结构性损害,可导致患者死亡或终生残疾。除结构性损害外,脑部意外创伤还会引起多种有害途径的激活导致继发性神经元死亡及永久性功能障碍。现有研究表明兴奋性毒性、神经炎症、水肿、氧化应激、神经元凋亡、代谢功能障碍等参与TBI主要致病过程,但相关分子机制研究仍不清楚。现有的治疗手段仅能对症处理,对控制继发性损伤仍不理想。本文通过对TBI神经生理学变化、神经化学变化以及其他病理表现作一综述,旨在为TBI相关研究提供参考,同时帮助临床制定新的治疗策略以尽可能挽救患者生命或减少并发症发生。

Traumatic brain injury (TBI) endangers structural damage to the brain parenchyma, which causes death or lifelong disability in patients. Besides structural damage, the accidental injuries of the brain could cause activation of various deleterious pathways, leading to subsequent neuronal death and permanent dysfunction. The present studies show excitotoxicity, neuroinflammation, edema, oxidative stress, neuronal apoptosis and cerebral metabolic dysfunction could participate in the major pathogenic process in TBI, but few was cleared about the related molecular mechanism study. The available methods could only treated patients symptomatically, and are still not ideal for controlling secondary injuries. This article provides a review of the neurophysiological changes, neurochemical changes, and other pathological manifestations of TBI, with the aim of providing reference for TBI related research and helping clinical development of new treatment strategies to rescue the patient or reduce the occurrence of complications.

[1]
Gorman KM, Dumire RD. Knowledge retention of the traumatic brain injury guidelines at a level 1 trauma center[J]. J Emerg Crit Care Med, 2019, 3: 17. DOI: 10.21037/jeccm.2019.02.06.
[2]
Young JT, Hughes N. Traumatic brain injury and homelessness: from prevalence to prevention[J]. Lancet Public Health, 2020, 5(1): e4-e5. DOI: 10.1016/s2468-2667(19)30225-7.
[3]
邹隽风,黄贤键,吴楚伟,等.中国颅脑创伤流行病学中存在的部分问题探讨[J].中华神经创伤外科电子杂志, 2021, 7(1): 59-62. DOI: 10.3877/cma.j.issn.2095-9141.2021.01.014.
[4]
Zetterberg H, Winblad B, Bernick C, et al. Head trauma in sports-clinical characteristics, epidemiology and biomarkers[J]. J Intern Med, 2019, 285(6): 624-634. DOI: 10.1111/joim.12863.
[5]
Prasetyo E. The primary, secondary, and tertiary brain injury[J]. Crit Care Shock, 2020, 23(2020): 4-13.
[6]
Thapa K, Khan H, Singh TG, et al. Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets[J]. J Mol Neurosci, 2021, 71(9): 1725-1742. DOI: 10.1007/s12031-021-01841-7.
[7]
Alexandris AS, Lee Y, Lehar M, et al. Traumatic axonopathy in spinal tracts after impact acceleration head injury: ultrastructural observations and evidence of SARM1 - dependent axonal degeneration[J]. Exp Neurol, 2023, 359: 114252. DOI: 10.1016/j.expneurol.2022.114252.
[8]
Albert WC, Sirén A. Experimental traumatic brain injury[J]. Exp Transl Stroke Med, 2010, 2(1): 16. DOI: 10.1186/2040-7378-2-16.
[9]
Chelly H, Chaari A, Daoud E, et al. Diffuse axonal injury in patients with head injuries: an epidemiologic and prognosis study of 124 cases[J]. J Trauma, 2011, 71(4): 838-846. DOI: 10.1097/TA.0b013e3182127baa.
[10]
Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury[J]. J Neurosurg, 2018, 130(4): 1080-1097. DOI: 10.3171/2017.10.Jns17352.
[11]
Dikranian K. Modeling traumatic brain injury: mechanisms of early neuronal and axon degeneration in the infant rodent brain[J]. Biomedical Reviews, 2019, 30: 25-36. DOI: 10.14748/BMR.V30.6385.
[12]
Sowers JL, Sowers ML, Shavkunov AS, et al. Traumatic brain injury induces region-specific glutamate metabolism changes as measured by multiple mass spectrometry methods[J]. iScience, 2021, 24(10): 103108. DOI: 10.1016/j.isci.2021.103108.
[13]
Sibarov DA, Antonov SM. Calcium-dependent desensitization of nmda receptors[J]. Biochemistry (Mosc), 2018, 83(10): 1173-1183. DOI: 10.1134/s0006297918100036.
[14]
Cheng G, Kong RH, Zhang LM, et al. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies[J]. Br J Pharmacol, 2012, 167(4): 699-719. DOI: 10.1111/j.1476-5381.2012.02025.x.
[15]
Kaur D, Pahwa P, Goel RK. Protective effect of nerolidol against pentylenetetrazol-induced kindling, oxidative stress and associated behavioral comorbidities in mice[J]. Neurochem Res, 2016, 41(11): 2859-2867. DOI: 10.1007/s11064-016-2001-2.
[16]
崔大勇,王新,张博.小胶质细胞在颅脑损伤中免疫调控及对神经元的作用机制[J].中华神经创伤外科电子杂志, 2022, 8(1): 56-58. DOI: 10.3877/cma.j.issn.2095-9141.2022.01.012.
[17]
Xu H, Wang Z, Li J, et al. The polarization states of microglia in tbi: a new paradigm for pharmacological intervention[J]. Neural Plast, 2017, 2017: 5405104. DOI: 10.1155/2017/5405104.
[18]
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer's disease[J]. Inflammopharmacology, 2019, 27(4): 663-677. DOI: 10.1007/s10787-019-00580-x.
[19]
Shetty AK, Mishra V, Kodali M, et al. Corrigendum: blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves[J]. Front Cell Neurosci, 2014, 8: 404. DOI: 10.3389/fncel.2014.00404.
[20]
Loane DJ, Stoica BA, Tchantchou F, et al. Novel mGluR5 positive allosteric modulator improves functional recovery, attenuates neurodege-neration, and alters microglial polarization after experimental traumatic brain injury[J]. Neurotherapeutics, 2014, 11(4): 857-869. DOI: 10.1007/s13311-014-0298-6.
[21]
Loane DJ, Kumar A. Microglia in the TBI brain: the good, the bad, and the dysregulated[J]. Exp Neurol, 2016, 275(3): 316-327. DOI: 10.1016/j.expneurol.2015.08.018.
[22]
Cherry JD, Olschowka JA, O'Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed[J]. J Neuroinflammation, 2014, 11(1): 98. DOI: 10.1186/1742-2094-11-98.
[23]
Ponomarev ED, Maresz K, Tan Y, et al. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells[J]. J Neurosci, 2007, 27(40): 10714-10721. DOI: 10.1523/JNEUROSCI.1922-07.2007.
[24]
Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention[J]. Brain Behav Immun, 2012, 26(8): 1191-1201. DOI: 10.1016/j.bbi.2012.06.008.
[25]
Gyoneva S, Ransohoff RM. Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines[J]. Trends Pharmacol Sci, 2015, 36(7): 471-480. DOI: 10.1016/j.tips.2015.04.003.
[26]
Shlosberg D, Benifla M, Kaufer D, et al. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury[J]. Nat Rev Neurol, 2010, 6(7): 393-403. DOI: 10.1038/nrneurol.2010.74.
[27]
Gilbert M, Snyder C, Corcoran C, et al. The association of traumatic brain injury with rate of progression of cognitive and functional impairment in a population-based cohort of Alzheimer's disease: the Cache county dementia progression study[J]. Int Psychogeriatrics, 2014, 26(10): 1593-1601. DOI: 10.1017/S1041610214001689.
[28]
张建宁.颅脑创伤后脑水肿机制的研究进展[J].中华神经创伤外科电子杂志, 2020, 6(5): 257-258. DOI: 10.3877/cma.j.issn.2095-9141.2020.05.001.
[29]
DeWitt DS, Prough DS. Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature[J]. J Neurotrauma, 2003, 20(9): 795-825. DOI: 10.1089/089771503322385755.
[30]
Unterberg AW, Stover J, Kress B, et al. Edema and brain trauma[J]. Neuroscience, 2004, 129(4): 1019-1027. DOI: 10.1016/j.neuroscience.2004.06.046.
[31]
Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments[J]. Curr Opin Neurol, 2010, 23(3): 293-299. DOI: 10.1097/WCO.0b013e328337f451.
[32]
Konar SK, Shukla D, Agrawal A. Posttraumatic brain edema: Pathophysiology, management, and current concept[J]. Apollo, 2019, 16(1): 2-7. DOI: 10.4103/am.am_82_18.
[33]
Winkler EA, Minter D, Yue JK, et al. Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets[J]. Neurosurg Clin N Am, 2016, 27(4): 473-488. DOI: 10.1016/j.nec.2016.05.008.
[34]
Prins M, Greco T, Alexander D, et al. The pathophysiology of traumatic brain injury at a glance[J]. Dis Model Mech, 2013, 6(6): 1307-1315. DOI: 10.1242/dmm.011585.
[35]
Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders[J]. Neurol Res, 2017, 39(1): 73-82. DOI: 10.1080/01616412.2016.1251711.
[36]
Huang Y, Long X, Tang J, et al. The attenuation of traumatic brain injury via inhibition of oxidative stress and apoptosis by tanshinone IIA[J]. Oxid Med Cell Longev, 2020, 2020: 4170156. DOI: 10.1155/2020/4170156.
[37]
Daglas M, Truong PH, Miles LQ, et al. Deferiprone attenuates neuropathology and improves outcome following traumatic brain injury[J]. Br J Pharmacol, 2023, 180(2): 214-234. DOI: 10.1111/bph.15950.
[38]
de Lores AG, Bersier M. Relationship between Na+, K+-ATPase and NMDA receptor at central synapses[J]. Curr Protein Pept Sci, 2014, 15(8): 761-777. DOI: 10.2174/1389203715666140903145608.
[39]
Hiebert JB, Shen Q, Thimmesch AR, et al. Traumatic brain injury and mitochondrial dysfunction[J]. Am J Med Sci, 2015, 350(2): 132-138. DOI: 10.1097/MAJ.0000000000000506.
[40]
Kasahara A, Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation[J]. Trends Cell Biol, 2014, 24(12): 761-770. DOI: 10.1016/j.tcb.2014.08.005.
[41]
McGuire JL, Ngwenya LB, McCullumsmith RE. Neurotransmitter changes after traumatic brain injury: an update for new treatment strategies[J]. Mol Psychiatry, 2019, 24(7): 995-1012. DOI: 10.1038/s41380-018-0239-6.
[42]
Kawa L, Arborelius UP, Yoshitake T, et al. Neurotransmitter systems in a mild blast traumatic brain injury model: catecholamines and serotonin[J]. J Neurotrauma, 2015, 32(16): 1190-1199. DOI: 10.1089/neu.2014.3669.
[43]
Hameed MQ, Hsieh TH, Morales QL, et al. Ceftriaxone treatment preserves cortical inhibitory interneuron function via transient salvage of GLT-1 in a rat traumatic brain injury model[J]. Cereb Cortex, 2019, 29(11): 4506-4518. DOI: 10.1093/cercor/bhy328.
[44]
Jenkins PO, Mehta MA, Sharp DJ. Catecholamines and cognition after traumatic brain injury[J]. Brain, 2016, 139(Pt 9): 2345-2371. DOI: 10.1093/brain/aww128.
[45]
Kgosidialwa O, Hakami O, Hussnain HM, et al. Growth hormone deficiency following traumatic brain injury[J]. Int J Mol Sci, 2019, 20(13): 3323. DOI: 10.3390/ijms20133323.
[46]
Kajal B, Puneet K, Rahul D. Neurobiology of traumatic brain injury[J]. Brain Injury, 2021, 35(10): 1113-1120. DOI: 10.1080/02699052.2021.1972152.
[1] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[2] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[3] 殷国青, 曾莉, 贺斌峰, 孙芬芬. Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 349-355.
[4] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[5] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[6] 李佳曦, 刘子源, 李学民. 二甲双胍对年龄相关性白内障影响的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 252-256.
[7] 王子琪, 李萍, 蔡标, 杨秀敏. 雌激素在糖尿病性视网膜病变中作用机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 187-192.
[8] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[9] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[10] 冯铭, 孙洪涛. 动脉瘤性蛛网膜下腔出血的颅内压监测与管理[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 248-253.
[11] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[12] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[13] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[14] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
[15] 买买提·依斯热依力, 尹强, 尹海龙, 李治建, 董雨微, 王永康, 克力木·阿不都热依木, 阿吉艾克拜尔·艾萨. 罗乐胃蜜膏抑制酸刺激诱导食管上皮细胞炎症发生的机制研究[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(03): 137-142.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?