[1] |
Gorman KM, Dumire RD. Knowledge retention of the traumatic brain injury guidelines at a level 1 trauma center[J]. J Emerg Crit Care Med, 2019, 3: 17. DOI: 10.21037/jeccm.2019.02.06.
|
[2] |
Young JT, Hughes N. Traumatic brain injury and homelessness: from prevalence to prevention[J]. Lancet Public Health, 2020, 5(1): e4-e5. DOI: 10.1016/s2468-2667(19)30225-7.
|
[3] |
|
[4] |
Zetterberg H, Winblad B, Bernick C, et al. Head trauma in sports-clinical characteristics, epidemiology and biomarkers[J]. J Intern Med, 2019, 285(6): 624-634. DOI: 10.1111/joim.12863.
|
[5] |
Prasetyo E. The primary, secondary, and tertiary brain injury[J]. Crit Care Shock, 2020, 23(2020): 4-13.
|
[6] |
Thapa K, Khan H, Singh TG, et al. Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets[J]. J Mol Neurosci, 2021, 71(9): 1725-1742. DOI: 10.1007/s12031-021-01841-7.
|
[7] |
Alexandris AS, Lee Y, Lehar M, et al. Traumatic axonopathy in spinal tracts after impact acceleration head injury: ultrastructural observations and evidence of SARM1 - dependent axonal degeneration[J]. Exp Neurol, 2023, 359: 114252. DOI: 10.1016/j.expneurol.2022.114252.
|
[8] |
Albert WC, Sirén A. Experimental traumatic brain injury[J]. Exp Transl Stroke Med, 2010, 2(1): 16. DOI: 10.1186/2040-7378-2-16.
|
[9] |
Chelly H, Chaari A, Daoud E, et al. Diffuse axonal injury in patients with head injuries: an epidemiologic and prognosis study of 124 cases[J]. J Trauma, 2011, 71(4): 838-846. DOI: 10.1097/TA.0b013e3182127baa.
|
[10] |
Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury[J]. J Neurosurg, 2018, 130(4): 1080-1097. DOI: 10.3171/2017.10.Jns17352.
|
[11] |
Dikranian K. Modeling traumatic brain injury: mechanisms of early neuronal and axon degeneration in the infant rodent brain[J]. Biomedical Reviews, 2019, 30: 25-36. DOI: 10.14748/BMR.V30.6385.
|
[12] |
Sowers JL, Sowers ML, Shavkunov AS, et al. Traumatic brain injury induces region-specific glutamate metabolism changes as measured by multiple mass spectrometry methods[J]. iScience, 2021, 24(10): 103108. DOI: 10.1016/j.isci.2021.103108.
|
[13] |
Sibarov DA, Antonov SM. Calcium-dependent desensitization of nmda receptors[J]. Biochemistry (Mosc), 2018, 83(10): 1173-1183. DOI: 10.1134/s0006297918100036.
|
[14] |
Cheng G, Kong RH, Zhang LM, et al. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies[J]. Br J Pharmacol, 2012, 167(4): 699-719. DOI: 10.1111/j.1476-5381.2012.02025.x.
|
[15] |
Kaur D, Pahwa P, Goel RK. Protective effect of nerolidol against pentylenetetrazol-induced kindling, oxidative stress and associated behavioral comorbidities in mice[J]. Neurochem Res, 2016, 41(11): 2859-2867. DOI: 10.1007/s11064-016-2001-2.
|
[16] |
|
[17] |
Xu H, Wang Z, Li J, et al. The polarization states of microglia in tbi: a new paradigm for pharmacological intervention[J]. Neural Plast, 2017, 2017: 5405104. DOI: 10.1155/2017/5405104.
|
[18] |
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer's disease[J]. Inflammopharmacology, 2019, 27(4): 663-677. DOI: 10.1007/s10787-019-00580-x.
|
[19] |
Shetty AK, Mishra V, Kodali M, et al. Corrigendum: blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves[J]. Front Cell Neurosci, 2014, 8: 404. DOI: 10.3389/fncel.2014.00404.
|
[20] |
Loane DJ, Stoica BA, Tchantchou F, et al. Novel mGluR5 positive allosteric modulator improves functional recovery, attenuates neurodege-neration, and alters microglial polarization after experimental traumatic brain injury[J]. Neurotherapeutics, 2014, 11(4): 857-869. DOI: 10.1007/s13311-014-0298-6.
|
[21] |
Loane DJ, Kumar A. Microglia in the TBI brain: the good, the bad, and the dysregulated[J]. Exp Neurol, 2016, 275(3): 316-327. DOI: 10.1016/j.expneurol.2015.08.018.
|
[22] |
Cherry JD, Olschowka JA, O'Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed[J]. J Neuroinflammation, 2014, 11(1): 98. DOI: 10.1186/1742-2094-11-98.
|
[23] |
Ponomarev ED, Maresz K, Tan Y, et al. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells[J]. J Neurosci, 2007, 27(40): 10714-10721. DOI: 10.1523/JNEUROSCI.1922-07.2007.
|
[24] |
Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention[J]. Brain Behav Immun, 2012, 26(8): 1191-1201. DOI: 10.1016/j.bbi.2012.06.008.
|
[25] |
Gyoneva S, Ransohoff RM. Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines[J]. Trends Pharmacol Sci, 2015, 36(7): 471-480. DOI: 10.1016/j.tips.2015.04.003.
|
[26] |
Shlosberg D, Benifla M, Kaufer D, et al. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury[J]. Nat Rev Neurol, 2010, 6(7): 393-403. DOI: 10.1038/nrneurol.2010.74.
|
[27] |
Gilbert M, Snyder C, Corcoran C, et al. The association of traumatic brain injury with rate of progression of cognitive and functional impairment in a population-based cohort of Alzheimer's disease: the Cache county dementia progression study[J]. Int Psychogeriatrics, 2014, 26(10): 1593-1601. DOI: 10.1017/S1041610214001689.
|
[28] |
|
[29] |
DeWitt DS, Prough DS. Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature[J]. J Neurotrauma, 2003, 20(9): 795-825. DOI: 10.1089/089771503322385755.
|
[30] |
|
[31] |
Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments[J]. Curr Opin Neurol, 2010, 23(3): 293-299. DOI: 10.1097/WCO.0b013e328337f451.
|
[32] |
Konar SK, Shukla D, Agrawal A. Posttraumatic brain edema: Pathophysiology, management, and current concept[J]. Apollo, 2019, 16(1): 2-7. DOI: 10.4103/am.am_82_18.
|
[33] |
Winkler EA, Minter D, Yue JK, et al. Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets[J]. Neurosurg Clin N Am, 2016, 27(4): 473-488. DOI: 10.1016/j.nec.2016.05.008.
|
[34] |
Prins M, Greco T, Alexander D, et al. The pathophysiology of traumatic brain injury at a glance[J]. Dis Model Mech, 2013, 6(6): 1307-1315. DOI: 10.1242/dmm.011585.
|
[35] |
Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders[J]. Neurol Res, 2017, 39(1): 73-82. DOI: 10.1080/01616412.2016.1251711.
|
[36] |
Huang Y, Long X, Tang J, et al. The attenuation of traumatic brain injury via inhibition of oxidative stress and apoptosis by tanshinone IIA[J]. Oxid Med Cell Longev, 2020, 2020: 4170156. DOI: 10.1155/2020/4170156.
|
[37] |
Daglas M, Truong PH, Miles LQ, et al. Deferiprone attenuates neuropathology and improves outcome following traumatic brain injury[J]. Br J Pharmacol, 2023, 180(2): 214-234. DOI: 10.1111/bph.15950.
|
[38] |
de Lores AG, Bersier M. Relationship between Na+, K+-ATPase and NMDA receptor at central synapses[J]. Curr Protein Pept Sci, 2014, 15(8): 761-777. DOI: 10.2174/1389203715666140903145608.
|
[39] |
Hiebert JB, Shen Q, Thimmesch AR, et al. Traumatic brain injury and mitochondrial dysfunction[J]. Am J Med Sci, 2015, 350(2): 132-138. DOI: 10.1097/MAJ.0000000000000506.
|
[40] |
Kasahara A, Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation[J]. Trends Cell Biol, 2014, 24(12): 761-770. DOI: 10.1016/j.tcb.2014.08.005.
|
[41] |
McGuire JL, Ngwenya LB, McCullumsmith RE. Neurotransmitter changes after traumatic brain injury: an update for new treatment strategies[J]. Mol Psychiatry, 2019, 24(7): 995-1012. DOI: 10.1038/s41380-018-0239-6.
|
[42] |
Kawa L, Arborelius UP, Yoshitake T, et al. Neurotransmitter systems in a mild blast traumatic brain injury model: catecholamines and serotonin[J]. J Neurotrauma, 2015, 32(16): 1190-1199. DOI: 10.1089/neu.2014.3669.
|
[43] |
Hameed MQ, Hsieh TH, Morales QL, et al. Ceftriaxone treatment preserves cortical inhibitory interneuron function via transient salvage of GLT-1 in a rat traumatic brain injury model[J]. Cereb Cortex, 2019, 29(11): 4506-4518. DOI: 10.1093/cercor/bhy328.
|
[44] |
Jenkins PO, Mehta MA, Sharp DJ. Catecholamines and cognition after traumatic brain injury[J]. Brain, 2016, 139(Pt 9): 2345-2371. DOI: 10.1093/brain/aww128.
|
[45] |
Kgosidialwa O, Hakami O, Hussnain HM, et al. Growth hormone deficiency following traumatic brain injury[J]. Int J Mol Sci, 2019, 20(13): 3323. DOI: 10.3390/ijms20133323.
|
[46] |
Kajal B, Puneet K, Rahul D. Neurobiology of traumatic brain injury[J]. Brain Injury, 2021, 35(10): 1113-1120. DOI: 10.1080/02699052.2021.1972152.
|