[1] |
Hyder AA, Wunderlich CA, Puvanachandra P, et al. The impact of traumatic brain injuries: a global perspective[J]. Neuro Rehabilitation, 2007, 22(5): 341-353.
|
[2] |
Lei J, Gao G, Jiang J. Acute traumatic brain injury: is current management evidence based? An empirical analysis of systematic reviews[J]. J Neurotrauma, 2013, 30(7): 529-537.
|
[3] |
Chen YC, Smith DH, Meaney DF. In-vitro approaches for studying blast-induced traumatic brain injury[J]. J Neurotrauma, 2009, 26(6): 861-876.
|
[4] |
Nelson LE, Lu J, Guo T, et al. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects[J]. Anesthesiology, 2003, 98(2): 428-436.
|
[5] |
Farrell D, Bendo AA. Perioperative management of severe traumatic brain injury: what is new?[J]. Curr Anesthesiol Rep, 2018, 8(3): 279-289.
|
[6] |
Feeney DM, Boyeson MG, Linn RT, et al. Responses to cortical injury: I. Methodology and local effects of contusions in the rat[J]. Brain Res, 1981, 211(1): 67-77.
|
[7] |
夏照帆,马兵.现代战争条件下海战创伤救治的几点思考[J].解放军医学杂志, 2016, 41(12): 973-976.
|
[8] |
吴新文,吴珺.现代海战伤员特点及救治措施[J].人民军医, 2002, 45(6): 315-316.
|
[9] |
Choi HA, Jeon SB, Samuel S, et al. Paroxysmal sympathetic hyperactivity after acute brain injury[J]. Curr Neurol Neurosci Rep, 2013, 13(8): 370.
|
[10] |
Du J, Xiao K, Li L, et al. Temporal and spatial diversity of bacterial communities in coastal waters of the South china sea[J]. PLoS One, 2013, 8(6): e66968.
|
[11] |
Baguley IJ, Perkes IE, Fernandez-Ortega JF, et al. Paroxysmal sympathetic hyperactivity after acquired brain injury: consensus on conceptual definition, nomenclature, and diagnostic criteria[J]. J Neurotrauma, 2014, 31(17): 1515-1520.
|
[12] |
Flower O, Hellings S. Sedation in traumatic brain injury[J]. Emerg Med Int, 2012, 2012: 637171.
|
[13] |
Lump D, Moyer M. Paroxysmal sympathetic hyperactivity after severe brain injury[J]. Curr Neurol Neurosci Rep, 2014, 14(11): 494.
|
[14] |
Sshu S, Nag DS, Swain A, et al. Biochemical changes in the injured brain[J]. World J Biol Chem, 2017, 8(1): 21-31.
|
[15] |
Taupin V, Toulmond S, Serrano A, et al. Increase in IL-6, IL-1 and TNF levels in rat brain following traumatic lesion. Influence of pre- and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand[J]. J Neuroimmunol, 1993, 42(2): 177-185.
|
[16] |
Ding M, Chen Y, Luan H, et al. Dexmedetomidine reduces inflammation in traumatic brain injury by regulating the inflammatory responses of macrophages and splenocytes[J]. Exp Ther Med, 2019, 18(3): 2323-2331.
|
[17] |
Singhal A, Baker AJ, Hare GM, et al. Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury[J]. J Neurotrauma, 2002, 19(8): 929-937.
|
[18] |
Pleines UE, Morganti-Kossmann MC, Rancan M, et al. S-100 beta reflects the extent of injury and outcome, whereas neuronal specific enolase is a better indicator of neuroinflammation in patients with severe traumatic brain injury[J]. J Neurotrauma, 2001, 18(5): 491-498.
|
[19] |
Li F, Wang X, Zhang Z, et al. Dexmedetomidine attenuates neuroinflammatory-induced apoptosis after traumatic brain injury via Nrf2 signaling pathway[J]. Ann Clin Transl Neurol, 2019, 6(9): 1825-1835.
|
[20] |
Shen M, Wang S, Wen X, et al. Dexmedetomidine exerts neuroprotective effect via the activation of the PI3K/Akt/mTOR signaling pathway in rats with traumatic brain injury[J]. Biomed Pharmacother, 2017, 95: 885-893.
|
[21] |
Schoeler M, Loetscher PD, Rossaint R, et al. Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury[J]. BMC Neurol, 2012, 12(11): 20.
|
[22] |
Dahmani S, Rouelle D, Gressens P, et al. Characterization of the postconditioning effect of dexmedetomidine in mouse organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation[J]. Anesthesiology, 2010, 112(2): 373-383.
|
[23] |
Wang J, Lei B, Popp S, et al. Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia[J]. Neuroscience, 2007, 145(3): 1097-1107.
|