切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2020, Vol. 06 ›› Issue (01) : 44 -48. doi: 10.3877/cma.j.issn.2095-9141.2020.01.011

所属专题: 文献

基础研究

内脂素改善创伤性脑损伤小鼠神经功能修复的研究
吴毅1, 梁仔2, 刘墉3, 刘成辉1,()   
  1. 1. 528200 佛山,南海区人民医院神经外科
    2. 524400 廉江,广东医科大学附属廉江医院脑卒中科
    3. 524000 湛江,广东医科大学药学院
  • 收稿日期:2019-10-26 出版日期:2020-02-15
  • 通信作者: 刘成辉
  • 基金资助:
    广东省科技计划项目(2011B031880048)

Visfatin improves the neurological repair of traumatic brain injury mice

Yi Wu1, Zai Liang2, Yong Liu3, Chenghui Liu1,()   

  1. 1. Department of Neurosurgery, The People’s Hospital of Nanhai District, Foshan 528200, Guangdong Province, China
    2. Stroke Centre, The Affiliated Lianjiang Hospital of Guangdong Medical University, Lianjiang 524400, Guangdong Province, China
    3. College of Pharmacy, Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
  • Received:2019-10-26 Published:2020-02-15
  • Corresponding author: Chenghui Liu
  • About author:
    Corresponding author: Liu Chenghui, Email:
引用本文:

吴毅, 梁仔, 刘墉, 刘成辉. 内脂素改善创伤性脑损伤小鼠神经功能修复的研究[J]. 中华神经创伤外科电子杂志, 2020, 06(01): 44-48.

Yi Wu, Zai Liang, Yong Liu, Chenghui Liu. Visfatin improves the neurological repair of traumatic brain injury mice[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2020, 06(01): 44-48.

目的

研究内脂素对创伤性脑损伤(TBI)小鼠的神经功能保护作用及机制。

方法

通过液压冲击方法建立C57BL/6小鼠液压冲击脑损伤模型,共48只,然后随机分为实验组A、实验组B、对照组,各16只。模型建立3 h后起,实验组A和实验组B分别给予腹腔注射内脂素15、30 μg/kg,1次/d,共7 d,对照组给予腹腔注射生理盐水。治疗开始前、开始治疗后第3、14、28天各组随机选取10只小鼠,比较实验组和对照组小鼠的神经功能缺损评分(NSS);治疗结束后第2天,每组随机取3只小鼠全脑取材,比较TUNEL染色后阳性细胞差异;再随机取3只收集脑组织总蛋白,比较各组小鼠脑组织凋亡相关蛋白水平差异;剩余10只小鼠在治疗结束后第24~28天,比较Morris水迷宫小鼠逃逸潜伏期时间差异。

结果

3组小鼠NSS评分在开始治疗后第3天时差异无统计学意义(P>0.05),但在第14、28天时,内脂素治疗组小鼠NSS评分低于对照组,差异均具有统计学意义(P<0.05);3组小鼠在治疗结束后24、25 d时水迷宫潜伏逃逸期差异无统计学意义(P>0.05),但在第26、27、28天时,内脂素治疗组小鼠水迷宫潜伏逃逸期小于对照组,差异具有统计学意义(P<0.05)。内脂素治疗组小鼠脑切片中TUNEL阳性细胞数小于对照组,差异具有统计学意义(P<0.05),同时凋亡相关蛋白cleave Caspase-3、cleaved PARP的表达量也低于对照组,差异具有统计学意义(P<0.05)。

结论

内脂素能够抑制小鼠TBI后病灶周围神经细胞的凋亡及降低凋亡相关蛋白的表达量,改善神经功能的修复。

Objective

To explore the neuroprotective effect and mechanism of visfatin in traumatic brain injury (TBI) mice model.

Methods

A total of 48 C57BL/6 mice with hydraulic shock brain injury model were established by means of hydraulic shock method, and then randomly divided into experimental group A, experimental group B and control group, 16 mice each. Three hours after the establishment of the model, experimental group A and experimental group B were given intraperitoneal injection of visfatin 15 and 30 μg/kg, respectively, once a day for 7 d, while the control group was given intraperitoneal injection of normal saline. Neurological severity scores (NSS) were compared before treatment, on day 3, day 14, and day 28 using 10 randomly selected mice. On the second day after the end of treatment, the whole brain of 3 mice in each group were randomly collected to compare the difference of positive cells after TUNEL staining, and then 3 mice were randomly collected from the brain tissue to compare the differences of apoptosis-related protein levels. The remaining 10 mice were compared with Morris water maze experiment from 24 to 28 d after treatment.

Results

There was no statistical difference in NSS scores of 3 groups at day 3 (P>0.05), but at day 14 and 28, the NSS scores of the visfatin-treated group were lower than those of the control group, with significant differences (P<0.05). There was no statistically significant difference in the latent escape period of water maze in the 3 groups at the 24th and 25th day (P>0.05), but at the 26th, 27th and 28th day, the latent escape period of water maze in the visfatin-treated group was smaller than that in the control group (P<0.05). The number of TUNEL positive cells in the brain sections of rats treated with lipoprotein was smaller than that of the control group (P<0.05), and the expression levels of apoptosis-related protein cleave caspase-3 and cleaved PARP were also lower than those of the control group (P<0.05).

Conclusion

Visfatin can inhibit the apoptosis of neural cells peripheral lesion and reduce the expression of apoptosis-related proteins after TBI in mice, improve the repair of neural function.

表1 3组小鼠的神经功能缺损评分比较(±s
表2 3组小鼠水迷宫潜伏逃逸期比较(s,±s
图1 3组小鼠第28天时水迷宫路径图
图2 3组小鼠TUNEL染色及凋亡相关蛋白比较
[1]
Gabbe BJ,Biostat GD,Lecky FE, et al. The effect of an organized trauma system on mortality in major trauma involving serious head injury[J]. Ann Surg, 2011, 253(1): 138-143.
[2]
王永斌.重症颅脑外伤的临床治疗研究进展[J].中国伤残医学, 2016, 24(11): 62-63.
[3]
Sobuwa S,Hartzenberg HB,Geduld H, et al. Predicting outcome in severe traumatic brain injury using a simple prognostic model[J]. S Afr Med J, 2014, 104(7): 492-494.
[4]
林清松,康德智.创伤性脑血管损伤[J].中华神经创伤外科电子杂志, 2016, 2(3): 178-180.
[5]
Wang P,Miao CY. NAMPT as a therapeutic target against stroke[J]. Trends Pharmacol Sci, 2015, 36(12): 891-905.
[6]
Hopp AK,Grüter P,Hottiger MO. Regulation of glucose metabolism by NAD+ and ADP-ribosylation[J]. Cells, 2019, 8(8): pii E890.
[7]
Verdin E. NAD+ in aging, metabolism, and neurodegeneration[J]. Science, 2015, 350(6265): 1208-1213.
[8]
黄国平,吴俊林.创伤后应激障碍与代谢综合征的关系[J].中华行为医学与脑科学杂志, 2011, 20(3): 283-285.
[9]
张赟建,张强,石汉平.创伤应激后的糖代谢[J].中国临床营养杂志, 2006, 14(5): 316-320.
[10]
金卫篷,周源,尉辉杰,等.小鼠液压冲击脑损伤模型的建立和分级[J].中华实验外科杂志, 2016, 33(3): 828-832.
[11]
张曼,滕陈怀,吴芳芳,等.依达拉奉对小鼠创伤性脑损伤后氧化应激反应的影响[J].中华急诊医学杂志, 2019, 28(3): 323-327.
[12]
Liu D,Pitta M,Mattson MP. Preventing NAD+ depletion protects neurons against excitotoxicity: bioenergetic effects of mild mitochondrial uncoupling and caloric restriction[J]. Ann N Y Acad Sci, 2008, 1147: 275-282.
[13]
Bowman CE,Scafidi J,Scafidi S. Metabolic perturbations after pediatric TBI: it’s not just about glucose[J]. Exp Neurol, 2019, 316: 74-84.
[14]
Brooks GA,Martin NA. Cerabral metabolism following traumatic brain injury: new discoveries with implications for treatment[J]. Front Neurosci, 2014, 8, 408.
[15]
Pieper AA,Xie S,Capota E, et al. Discovery of a proneurogenic, neruoprective chemical[J]. Cell, 2010, 142(1): 39-51.
[16]
Wang G,Han T,Nijhawan D, et al. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage[J]. Cell, 2014, 158(6): 1324-1334.
[17]
杨裕华,王际莘.内脂素的糖代谢作用研究进展[J].中国老年学杂志, 2012, 32(22): 5102-5105.
[18]
Afshar S,Shahidi S,Rohani AH, et al. The effect of NAD-299 and TCB-2 on learning and memory, hippocampal BDNF levels and amyloid plaques in streptozotocin-induced memory deficits in male rats[J]. Psychopharmacology, 2018, 235(10): 2809-2822.
[19]
Huang Q,Sun M,Li M, et al. Combination of NAD+ and NADPH offers greater neuroprotection in ischemic stroke models by relieving metabolic stress[J]. Mol Neurobiol, 2018, 55(7): 6063-6075.
[20]
何云,许本柯,杨群,等.早期应激减低C57小鼠认知功能相关的海马神经元树突棘密度[J].解剖学杂志, 2019, 42(5): 462-467.
[21]
刘先珍,章翔,费舟,等.二次脑损伤对弥漫性脑损伤后神经元损伤影响的实验观察[J].第四军医大学学报, 2001, 22(23): 2203-2204.
[1] 潘立, 谢理政, 程宏伟, 茆翔. 创伤性颅脑损伤后垂体功能减退[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 308-312.
[2] 张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.
[3] 王景景, 符锋, 李建伟, 任党利, 陈翀, 刘慧, 孙洪涛, 涂悦. 针刺对中型创伤性颅脑损伤后BDNF/TrkB信号通路的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 199-205.
[4] 贾素英, 李倩, 郭姗姗. 创伤性颅脑损伤后血小板功能障碍的研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 180-185.
[5] 何佳伟, 张良, 杨骐, 王占祥. 创伤性颅脑损伤后进展性出血性损伤的诊疗现状[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 175-179.
[6] 王召, 田进杰, 郭朝, 王蕾, 严红燕, 冯素娟, 张毅. 血浆PGK1早期检测对创伤性颅脑损伤患者病情严重程度及预后的预测价值[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 154-159.
[7] 张永明. 颈段脊髓电刺激治疗颅脑损伤后慢性意识障碍的进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 129-134.
[8] 李文臣, 李日, 韩霖, 张舒岩. 正中神经电刺激对创伤性颅脑损伤昏迷促醒作用的Meta分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 269-275.
[9] 卢维新, 严贵忠, 任海军. 近红外光谱技术在创伤性颅脑损伤中的应用研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 311-314.
[10] 康德智. 创伤性颅脑损伤后颅外并发症的精准治疗策略[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 193-195.
[11] 崔文兴, 葛顺楠, 屈延. 创伤性颅脑损伤后继发血管内皮细胞损伤机制的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 183-187.
[12] 陈昊阳, 冯雷. NLR与PLR及联合指标预测创伤性颅脑损伤预后的临床价值及预后模型的构建[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 266-270.
[13] 谢佳芯, 方芳, 张社敏, 戴志强, 曹宁, 邓洵鼎, 封亚平. 平时颅脑火器伤临床救治体会(附235例报道)[J]. 中华神经创伤外科电子杂志, 2021, 07(01): 25-28.
[14] 朱宁, 苏芮, 周建新, 李宏亮. 重型创伤性颅脑损伤患者自发性过度通气的研究进展[J]. 中华重症医学电子杂志, 2021, 07(03): 272-276.
[15] 林英鸿, 张宇鹏, 夏金言, 黄力, 李钻芳, 林昆哲, 王守森. 中国临床试验注册中心创伤性颅脑损伤相关临床试验的特征分析[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(02): 74-80.
阅读次数
全文


摘要