切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2016, Vol. 02 ›› Issue (01) : 26 -30. doi: 10.3877/cma.j.issn.2095-9141.2016.01.007

所属专题: 文献

基础研究

层粘连蛋白靶向NT3促进创伤性脑损伤的修复研究
樊娟1, 张振海1, 张国良1, 沈春森1, 罗永春1, 袁晓敏1, 张鹏飞1, 党圆圆1, 徐如祥1,()   
  1. 1. 100700 北京,北京军区总医院神经外科研究所
  • 收稿日期:2015-12-02 出版日期:2016-02-15
  • 通信作者: 徐如祥
  • 基金资助:
    国自然基金青年项目(81200959)

Laminin targeted NT3 promotes traumatic brain injury repair

Juan Fan1, Zhenhai Zhang1, Guoliang Zhang1, Chunsen Shen1, Yongchun Luo1, Xiaomin Yuan1, Pengfei Zhang1, Yuanyuan Dang1   

  1. 1. Department of Neurosurgery Research Institute, The Military General Hospital of Beijing PLA, 100700 Beijing, China
  • Received:2015-12-02 Published:2016-02-15
  • About author:
    Corresponding author: Xu Ruxiang, Email:
引用本文:

樊娟, 张振海, 张国良, 沈春森, 罗永春, 袁晓敏, 张鹏飞, 党圆圆, 徐如祥. 层粘连蛋白靶向NT3促进创伤性脑损伤的修复研究[J]. 中华神经创伤外科电子杂志, 2016, 02(01): 26-30.

Juan Fan, Zhenhai Zhang, Guoliang Zhang, Chunsen Shen, Yongchun Luo, Xiaomin Yuan, Pengfei Zhang, Yuanyuan Dang. Laminin targeted NT3 promotes traumatic brain injury repair[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2016, 02(01): 26-30.

目的

研制能与层粘连蛋白牢固结合的含有层粘连蛋白(laminin)结合域的NT3(LBD-NT3),探讨其与损伤后增多的层粘连蛋白结合促进脑损伤的修复机理。

方法

46只SD大鼠随机分为空白对照组(8只)、假手术组(8只)、PBS组(10只)、NT3组(10只)、LBD-NT3组(10只),制作液压打击模型后注射对应的PBS或因子,利用水迷宫实验进行行为学评分,1个月后处死大鼠,通过大鼠脑组织免疫荧光染色,比较各组神经元和胶质细胞的增减,用SPSS 19.0统计学做统计分析。

结果

LBD-NT3组大鼠的水迷宫实验表现更好,和假手术组大鼠相比,P=0.845>0.05;与空白对照组相比,P=0.956>0.05;与PBS相比,P=0.006<0.05;与NT3组相比,P=0.089>0.05。笔者进一步得出,第17、18天,NT3组大鼠和LBD-NT3组有显著性差异,P<0.05。神经元细胞较多,胶质细胞较少,LBD-NT3与PBS组、NT3组差异具有统计学意义(P<0.05),与空白对照组、假手术组未见统计学差异。

结论

LBD-NT3和体内增多的laminin结合后,大鼠脑组织损伤相对较小,周围的神经元较多,胶质细胞较少,功能保留较好。

Objective

To construct and prepare laminin binding domain NT3(LBD-NT3), exploring its mechanism to promote brain injury repaire with increasing laminin.

Methods

Fourty-six rats were grouped into naive(8)、sham(8)、PBS(10)、NT3(10)、LBD-NT3(10) randomly. Following hydraulic strike, PBS or NT3 or LBD-NT3 was injected into the lesion. Behavioral test went on by the Morris water maze task. One month after the operation, the rats were perfused and executed, neuron and glial cell were compared by NeuN and GFAP separately with Immunofluorescence staining. Statistical analysis was made by SPSS 19.0.

Results

In the Laminin-NT3 group, rats performed better in Morris water maze task, P<0.05(compared with PBS), P>0.05(compared with na?ve、sham、NT3), but significantly better than NT3 group on 17th、18th day (P<0.05) . LBD-NT3 had more positive NeuN cells and and less GFAP expression than PBS、NT3 (P<0.05) . There was statistical significance among the groups.

Conclusion

LBD-NT3 could bind to the increasing laminin. Therefore, the brain lesion was smaller, neurons increased and glial cells decreased.

图1 大鼠到达平台所用时间、路程和大鼠穿越平台次数的比较
表1 水迷宫时间(s)(±s)
表2 水迷宫路程(±s)
表3 NeuN阳性细胞数(±s)
表4 GFAP平均光密度值(%)(±s)
图2 H.E.染色显示大鼠缺损脑组织(×6.3)
图3 免疫荧光染色NeuN表达(×200)
图4 免疫荧光染色GFAP表达(×200)
[1]
Hicks RR,Numan S,Dhillon HS, et al. Alterations in BDNF and NT-3 mRNAs in rat hippocampus after experimental brain trauma[J]. Mol. Brain Res, 1997, 48(2): 401-406.
[2]
Hicks RR,Zhang L,Atkinson A, et al. Environmental enrichment attenuates cognitive deficits, but does not alter neurotrophin gene expression in the hippocampus following lateral fluid percussion brain injury[J]. Neuroscience, 2002, 112(3): 631-637.
[3]
Hausmann R,Betz P. The time course of the vascular response to human brain injury--an immunohistochemical study[J]. Int J Legal Med, 2000, 113(5): 288-292.
[4]
McTigue DM,Horner PJ,Stokes BT, et al. Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord[J]. J Neurosci, 1998, 18(14): 5354-5365.
[5]
Aumailley M,Bruckner-Tuderman L,Carter WG, et al. A simplified laminin nomenclature[J]. Matrix Biol, 2005, 24(5): 326-332.
[6]
Colognato H,Yurchenco PD. Form and function: the laminin family of heterotrimers[J]. Dev Dyn, 2000, 218(2): 213-234.
[7]
Perris R,Perissinotto D. Role of the extracellular matrix during neural crest cell migration[J]. Mech Dev, 2000, 95(1-2): 3-21.
[8]
Liu HM,Sturner WQ. Extravasation of plasma proteins in brain trauma[J]. Forensic Sci Int, 1988, 38(3-4): 285-295.
[9]
Bellail AC,Hunter SB,Brat DJ, et al. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion[J]. Int J Biochem Cell Biol, 2004, 36(6): 1046-1069.
[10]
Cullen DK,Stabenfeldt SE,Simon CM, et al. In vitro neural injury model for optimization of tissue-engineered constructs[J]. J Neurosci Res, 2007, 85(16): 3642-3651.
[11]
Hausmann R,Betz P. The time course of the vascular response to human brain injury—an immunohistochemical study[J]. Int J Legal Med, 2000, 113(5): 288-292.
[12]
Tate CC,Shear DA,Tate MC, et al. Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain[J]. J Tissue Eng Regen Med, 2009, 3(3): 208-217.
[13]
Yanaka K,Camarata PJ,Spellman SR, et al. Laminin peptide ameliorates brain injury by inhibiting leukocyte accumulation in a rat model of transient focal cerebral ischemia[J]. J Cereb Blood Flow Metab, 1997, 17(6): 605-611.
[14]
Dixon CE,Lyeth BG,Povlishock JT, et al. A fluid percussion model of experimental brain in-jury in the rat[J]. J. Neurosurg, 1987, 67(1): 110-119.
[15]
McIntosh TK,Vink R,Yamakami I, et al. Magnesium protects against neurological deficit after brain injury[J]. Brain Res, 1989, 482(2): 252-260.
[1] 周志鸿, 彭立辉. 间充质干细胞来源的细胞外囊泡治疗创伤性脑损伤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 251-255.
[2] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[3] 王建鹏, 廖勇仕, 丁文聪, 李冲, 陈锐. lncRNA在创伤性脑损伤中的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 365-370.
[4] 崔刚, 王德亮, 付茂武, 田璧铭, 王莹, 段虎斌. 创伤性脑损伤后鼠脑内RHO/ROCK信号通路与神经炎症反应及病理性损伤关系的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 324-328.
[5] 傅世龙, 王国锋, 侯鹏伟, 袁邦清, 魏梁锋, 王守森. 颅脑创伤患者术后再次开颅清除对侧血肿的影响因素分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 287-292.
[6] 程俊凯, 罗耀文, 李娟, 张磊, 杨淑涵, 王彦刚. 重复经颅磁刺激上调DJ-1表达改善小鼠创伤性脑损伤后功能障碍的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 261-268.
[7] 崔刚, 肖友朝, 王欢, 田璧铭, 王莹, 段虎斌. RHO/ROCK信号通路对创伤性脑损伤后颅内神经系统微环境的影响[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 204-208.
[8] 王鸿, 高俊宏, 卢青, 刘进仁, 范小琳, 李亮, 马宁, 王琪. 基于CiteSpace的创伤性脑损伤研究文献计量学分析[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 141-149.
[9] 齐洪武, 刘岩松, 曾维俊, 张立钊, 郭洪均, 刘清石. 儿童创伤性脑损伤的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 121-124.
[10] 毕万达, 刘阳珷玥, 戴双双. 载脂蛋白E在创伤性脑损伤中作用及机制的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 51-55.
[11] 余鹏飞, 麦兴进, 符树强, 苏保寿, 吴益敏, 喻闻庆. 血清sTREM-1、IL-12及IL-33水平对创伤性脑损伤严重程度和预后评估的价值[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 18-22.
[12] 崔刚, 王欢, 付茂武, 王莹, 段虎斌. NOGO-A在创伤性脑损伤后大鼠脑组织含量表达及干预实验研究[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 6-10.
[13] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[14] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
[15] 吴敏, 潘鑫, 王忻, 邱晨, 陈伟, 顾慧. 镇江市院前救治的创伤性脑损伤患者特征分析[J]. 中华卫生应急电子杂志, 2022, 08(01): 18-21.
阅读次数
全文


摘要