切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2025, Vol. 11 ›› Issue (05) : 307 -313. doi: 10.3877/cma.j.issn.2095-9141.2025.05.005

临床研究

颅脑损伤去骨瓣减压术后新发出血的风险预测列线图模型构建
李毅(), 姚略, 侯相见   
  1. 405499 重庆市开州区中医院外二科
  • 收稿日期:2024-10-24 出版日期:2025-10-15
  • 通信作者: 李毅

Construction of a new blood risk prediction nomogram model for craniocerebral injury after decompressive craniectomy

Yi Li(), Lue Yao, Xiangjian Hou   

  1. Second Department of Surgery, Chongqing Kaizhou Hospital of Traditional Chinese Medicine, Chongqing 405499, China
  • Received:2024-10-24 Published:2025-10-15
  • Corresponding author: Yi Li
引用本文:

李毅, 姚略, 侯相见. 颅脑损伤去骨瓣减压术后新发出血的风险预测列线图模型构建[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(05): 307-313.

Yi Li, Lue Yao, Xiangjian Hou. Construction of a new blood risk prediction nomogram model for craniocerebral injury after decompressive craniectomy[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2025, 11(05): 307-313.

目的

构建颅脑损伤(TBI)去骨瓣减压术后新发出血的风险预测列线图模型。

方法

选取重庆市开州区中医院外二科自2020年1月至2022年12月行去骨瓣减压术治疗的187例TBI患者,记录术后新发出血情况。将患者按照术后是否新发出血分为新发出血组和非新发出血组,采用二元Logistic回归分析筛选新发出血的危险因素。通过危险因素构建TBI去骨瓣减压术后新发出血的风险预测模型,采用重采样1000次的bootstrap进行内部验证(验证集63例)。采用Hosmer-Lemeshow评估模型的拟合优度,受试者工作特征(ROC)曲线分析模型的价值,校准曲线验证模型的准确性,决策曲线评估模型的临床获益情况。

结果

187例患者中,新发出血组23例(12.3%),非新发出血组164例(87.7%),2组患者的合并颅骨骨折占比、术前血肿量、术前Rotterdam CT评分、术前伴硬膜下血肿占比、脑疝占比、术后低血压占比、手术时间、受伤至手术时间、凝血酶时间比较,差异有统计学意义(P<0.05)。二元Logistic回归分析显示,合并颅骨骨折、术前血肿量≥20 cm3、Rotterdam CT评分4~6分、术后低血压、手术时间长是术后新发出血的独立危险因素。将危险因素通过R语言构建预测模型,Hosmer-Lemeshow检验显示训练集校准度良好(χ2=1.944,P=0.963)。ROC分析显示,训练集和验证集的AUC分别为0.905(95%CI:0.849~0.960)、0.925(95%CI:0.839~1.000)。校准曲线与理想曲线拟合良好,提示预测模型准确性高;决策曲线分析显示,该模型预测TBI去骨瓣减压术后新发出血的净获益区间均较大。

结论

合并颅骨骨折、术前血肿量≥20 cm3、Rotterdam CT评分4~6分、术后低血压、手术时间长是术后新发出血的影响因素,基于此构建的风险预测模型可为临床评估术后新发出血风险提供辅助参考。

Objective

To construct a nomogram model for predicting the risk of new bleeding for traumatic brain injury (TBI) after decompressive craniectomy.

Methods

A total of 187 TBI patients who underwent decompressive craniotomy at Second Department of Surgery of Chongqing Kaizhou Hospital of Traditional Chinese Medicine from January 2020 to December 2022 were selected, the occurrence of postoperative new blood emission was recorded. Patients were divided into newly generated blood group and non-newly generated blood group based on whether they experienced new bleeding after surgery, and binary Logistic regression analysis was used to screen for risk factors for new blood emission. The risk prediction model of new blood flow after TBI was constructed by risk factors. Internal validation was performed using bootstrap resampled 1000 times (validation set of 63 cases). Hosmer-Lemeshow was used to evaluate the fit degree of the model, receiver operating characteristic (ROC) curve was used to analyze the value of the model, calibration curve was used to verify the accuracy of the model, and decision curve was used to evaluate the clinical benefits of the model.

Results

Among the 187 patients, there were 23 cases (12.3%) in the newly generated blood group and 164 cases (87.7%) in the non- newly generated blood group. There were differences in the combined skull fracture, preoperative hematoma volume, preoperative Rotterdam CT score, preoperative subdural hematoma, cerebral hernia, postoperative hypotension, surgery time, injury to surgery time, and thrombin time between the two groups of patients (P<0.05). Binary Logistic regression analysis confirmed that combined skull fractures, preoperative hematoma volume≥20 cm3, Rotterdam CT score (4-6 points), postoperative hypotension, and surgery time were independent risk factors for new postoperative bleeding. Constructing a predictive model for risk factors using R language, Hosmer Lemeshow test showed good calibration of the training set (χ2=1.944, P=0.963). ROC analysis showed that the AUC of the training set and validation set were 0.905 (95%CI: 0.849-0.960) and 0.925 (95%CI: 0.839-1.000), respectively. The calibration curve fits well with the ideal curve, indicating high accuracy of the prediction model; The decision curve analysis shows that the model predicts a relatively large net benefit range for new bleeding after decompressive craniectomy.

Conclusions

Combined with skull fracture, preoperative hematoma ≥20 cm3, Rotterdam CT score (4-6 points), postoperative hypotension, and long operation time are the influencing factors for postoperative new blood emission. The risk prediction model based on this construction can provide an auxiliary reference for clinical assessment of the risk of postoperative new blood emission.

表1 新发出血组与非新发出血组患者的临床资料比较
Fig.1 Comparison of clinical data between patients with new onset bleeding and those without new onset bleeding
表2 二元Logistic回归分析变量赋值情况
Tab.2 Binary Logistic regression analysis of variable assignment status
表3 TBI去骨瓣减压术后新发出血的二元Logistic回归分析
Tab.3 Binary Logistic regression analysis of new bleeding after decompressive craniectomy following TBI
图1 颅脑损伤去骨瓣减压术后新发出血的列线图
Fig.1 Column chart of new bleeding after decompressive craniectomy following traumatic brain injury
图2 预测颅脑损伤去骨瓣减压术后新发出血的列线图模型的训练集ROC曲线分析
Fig.2 ROC curve analysis of the training set of a nomogram model for predicting new bleeding after decompressive craniectomy for traumatic brain injury
图3 预测颅脑损伤去骨瓣减压术后新发出血的列线图模型的验证集ROC曲线分析
Fig.3 ROC curve analysis of the validation set of a nomogram model for predicting new bleeding after decompressive craniectomy for traumatic brain injury
图4 预测颅脑损伤去骨瓣减压术后新发出血的列线图模型的校准曲线图
Fig.4 Calibration curve of a nomogram model for predicting new bleeding after decompressive craniectomy after traumatic brain injury
图5 预测颅脑损伤去骨瓣减压术后新发出血的列线图模型的决策曲线图
Fig.5 Decision curve of a nomogram model for predicting new bleeding after decompressive craniectomy for traumatic brain injury
[1]
Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management[J]. Med Clin North Am, 2020, 104(2): 213-238. DOI: 10.1016/j.mcna.2019.11.001.
[2]
Scarboro M, McQuillan KA. Traumatic brain injury update[J]. AACN Adv Crit Care, 2021, 32(1): 29-50. DOI: 10.4037/aacnacc2021331.
[3]
张宁,于国渊,王喜旺,等.去骨瓣减压术后对侧硬膜下积液的治疗[J].中国临床神经外科杂志, 2022, 27(5): 398-399. DOI: 10.13798/j.issn.1009-153X.2022.05.021.
[4]
顾永,任艳明,杨朝华,等.去骨瓣减压术在重型颅脑损伤中的应用进展[J].西部医学, 2022, 34(6): 932-936,封3. DOI: 10.3969/j.issn.1672-3511.2022.06.031.
[5]
王迪,朱周乐,陈荣,等.脑出血去骨瓣减压术后患者短期内血肿扩大或再出血的危险因素分析[J].中国医师进修杂志, 2022, 45(9): 818-823. DOI: 10.3760/cma.j.cn115455-20220104-00009.
[6]
李锋,贾丕丰,张卫峰,等.血肿腔穿刺引流结合去骨瓣减压治疗基底节区脑出血7例[J].安徽医药, 2022, 26(7): 1352-1354. DOI: 10.3969/j.issn.1009-6469.2022.07.018.
[7]
江基尧,朱诚,罗其中.现代颅脑损伤学[M]. 2版.上海:第二军医大学出版社, 2004.
[8]
程宝珍,林文风,冯志华,等.格拉斯哥昏迷评分在中重型颅脑损伤患者急救中的应用[J].中国急救复苏与灾害医学杂志, 2015, 10(10): 967-968. DOI: 10.3969/j.issn.1673-6966.2015.10.022.
[9]
汪静静,孟庆宁,孙艳秋.鹿特丹CT评分用于评估颅脑损伤患者预后[J].中国介入影像与治疗学, 2022, 19(1): 36-39. DOI: 10.13929/j.issn.1672-8475.2022.01.008.
[10]
王晓霞,骆建军,邓勇,等.抗氧化联合常规治疗对重型颅脑损伤合并肺部感染患者的疗效[J].实用医学杂志, 2022, 38(16): 2066-2070. DOI: 10.3969/j.issn.1006-5725.2022.16.016.
[11]
谢勇,高亚飞.改良去骨瓣减压术治疗重型创伤性脑损伤疗效观察[J].海南医学, 2023, 34(9): 1255-1259. DOI: 10.3969/j.issn.1003-6350.2023.09.009.
[12]
王丹丹,王晶,王安心,等.超敏C反应蛋白与新发脑出血关系研究[J].中国卒中杂志, 2021, 16(7): 664-669. DOI: 10.3969/j.issn.1673-5765.2021.07.005.
[13]
裴禹淞,段阳,杨本强,等.颅脑外伤去骨瓣减压术后患者短期内血肿扩大或新发出血的危险因素分析[J].中国现代医学杂志, 2021, 31(8): 54-58. DOI: 10.3969/j.issn.1005-8982.2021.08.010.
[14]
李龙,杨金庆,薛勇,等.颅脑损伤去骨瓣减压术后脑积水危险因素分析及分流时机[J].中国临床神经外科杂志, 2020, 25(9): 600-602. DOI: 10.13798/j.issn.1009-153X.2020.09.008.
[15]
李翔,李玥蓓,黄耀武,等.重型颅脑损伤去骨瓣减压术后挫伤性脑出血加重原因的相关研究[J].心血管外科杂志(电子版), 2018, 7(3): 452-454. DOI: 10.3969/j.issn.2095-2260.2018.03.040.
[16]
汪润,杨明昱,王美玲,等.全自动凝血分析仪凝血酶时间自动检测失败原因与应对措施分析[J].中华医学杂志, 2022, 102(11): 808-812. DOI: 10.3760/cma.j.cn112137-20211223-02879.
[1] 王冉, 陈家禾, 张旭阳, 马建, 郭永坤, 周少龙, 王新军. HMGB1抑制剂在TBI大鼠认知障碍中的作用及机制[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(05): 290-297.
[2] 世界华人神经外科协会颅脑创伤专业委员会, 颅骨缺损修补术专家共识协作组. 颅骨缺损修补术专家共识(2025版)[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(04): 210-219.
[3] 刘羽阳, 封亚平. 靶向创伤性颅脑损伤神经炎症的药物治疗研究进展[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 137-143.
[4] 方九强, 翟雨, 杨俊峰, 沈斌. 颅内血肿清除术联合去骨瓣减压术治疗创伤性颅脑损伤患者的效果分析[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 160-166.
[5] 马行远, 孙洪涛, 王景景, 任党利, 李泽萌, 丁晓, 张宇航, 邓廷桢, 陈月阳, 王淑莹, 杨以太, 王贺孔, 郑茂华. GRP75在创伤性颅脑损伤所致神经炎症中的机制研究[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 75-85.
[6] 吴东阳, 赵玉龙, 文安国, 李俊之, 纪鑫, 赵明光. 重型颅脑损伤患者术后血钠水平变化规律对继发性脑积水的预测价值[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 32-39.
[7] 郭瑶, 吕伟, 肖爵贤, 吴利东, 程祖珏. 创伤性颅脑损伤后MOG抗体相关性脱髓鞘疾病二例报道并文献复习[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 62-65.
[8] 王霞, 粱育磊, 沈杰, 袁杰, 吴颖鹏, 张丽丽, 陈相娣. 重型颅脑损伤术后脑膨出的风险预测模型构建[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(06): 359-366.
[9] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[10] 吴东阳, 林向丹, 石佐林, 赵玉龙, 王振, 文安国, 纪鑫, 李俊之, 赵明光. NF-L、NLRP3、S100B 蛋白在颅脑损伤严重程度及预后评估中的应用价值[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 279-285.
[11] 罗磊, 熊建平, 郑宏伟, 王嗣嵩, 柴祥, 吴青, 潘海鹏. 静脉留置针穿刺引流治疗颅骨修补术后硬膜外积液一例报道[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 315-317.
[12] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[13] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[14] 胡志恒, 任洪波, 宋志远, 曲大成, 张运刚, 朱旭. 重型颅脑损伤患者外周血CCL20、CCL23与继发性大面积脑梗死的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(02): 108-114.
[15] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?