[1] |
Jassam YN, Izzy S, Whalen M, et al. Neuroimmunology of traumatic brain injury: time for a paradigm shift[J]. Neuron, 2017, 95(6): 1246-1265. DOI: 10.1016/j.neuron.2017.07.010.
|
[2] |
Bergold PJ. Treatment of traumatic brain injury with anti-inflammatory drugs[J]. Exp Neurol, 2016, 275(Pt 3): 367-380. DOI: 10.1016/j.expneurol.2015.05.024.
|
[3] |
Haan BJ, Blackmon SN, Cobb AM, et al. Corticosteroids in critically ill patients: a narrative review[J]. Pharmacotherapy, 2024, 44(7): 581-602. DOI: 10.1002/phar.2944.
|
[4] |
El-Saber Batiha G, Al-Gareeb AI, Saad HM, et al. COVID-19 and corticosteroids: a narrative review[J]. Inflammopharmacology, 2022, 30(4): 1189-1205. DOI: 10.1007/s10787-022-00987-z.
|
[5] |
Kalra S, Malik R, Singh G, et al. Pathogenesis and management of traumatic brain injury(TBI): role of neuroinflammation and anti-inflammatory drugs[J]. Inflammopharmacology, 2022, 30(4): 1153-1166. DOI: 10.1007/s10787-022-01017-8.
|
[6] |
Visser J, van Boxel-Dezaire A, Methorst D, et al. Differential regulation of interleukin-10(IL-10) and IL-12 by glucocorticoids in vitro[J]. Blood, 1998, 91(11): 4255-4264.
|
[7] |
Girgis H, Palmier B, Croci N, et al. Effects of selective and non-selective cyclooxygenase inhibition against neurological deficit and brain oedema following closed head injury in mice[J]. Brain Res, 2013, 1491: 78-87. DOI: 10.1016/j.brainres.2012.10.049.
|
[8] |
Wang J, Hou Y, Zhang L, et al. Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses[J]. Mol Neurobiol, 2021, 58(3): 1052-1061. DOI: 10.1007/s12035-020-02171-2.
|
[9] |
Farahani F, Khaksari M, Amiresmaili S, et al. Possible involvement of female sex steroid hormones in intracellular signal transduction mediated by cytokines following traumatic brain injury[J]. Brain Res Bull, 2022, 178: 108-119. DOI: 10.1016/j.brainresbull.2021.11.013.
|
[10] |
Chen G, Shi J, Jin W, et al. Progesterone administration modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical contusion[J]. Ann Clin Lab Sci, 2008, 38(1): 65-74.
|
[11] |
Sen AP, Gulati A. Use of magnesium in traumatic brain injury[J]. Neurotherapeutics, 2010, 7(1): 91-99. DOI: 10.1016/j.nurt.2009.10.014.
|
[12] |
Li W, Bai YA, Li YJ, et al. Magnesium sulfate for acute traumatic brain injury[J]. J Craniofac Surg, 2015, 26(2): 393-398. DOI: 10.1097/scs.0000000000001339.
|
[13] |
Wang R, He M, Xu J. Initial serum magnesium level is associated with mortality risk in traumatic brain injury patients[J]. Nutrients, 2022, 14(19): 4174. DOI: 10.3390/nu14194174.
|
[14] |
Scrimgeour AG, Carrigan CT, Condlin ML, et al. Dietary zinc modulates matrix metalloproteinases in traumatic brain injury[J]. J Neurotrauma, 2018, 35(20): 2495-2506. DOI: 10.1089/neu.2017.5614.
|
[15] |
Hellmich HL, Eidson KA, Capra BA, et al. Injured fluoro-jade-positive hippocampal neurons contain high levels of zinc after traumatic brain injury[J]. Brain Res, 2007, 1127(1): 119-126. DOI: 10.1016/j.brainres.2006.09.094.
|
[16] |
|
[17] |
Wible EF, Laskowitz DT. Statins in traumatic brain injury[J]. Neurotherapeutics, 2010, 7(1): 62-73. DOI: 10.1016/j.nurt.2009.11.003.
|
[18] |
|
[19] |
Xu X, Gao W, Cheng S, et al. Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury[J]. J Neuroinflammation, 2017, 14(1): 167. DOI: 10.1186/s12974-017-0934-2.
|
[20] |
|
[21] |
Meythaler J, Fath J, Fuerst D, et al. Safety and feasibility of minocycline in treatment of acute traumatic brain injury[J]. Brain Inj, 2019, 33(5): 679-689. DOI: 10.1080/02699052.2019.1566968.
|
[22] |
Bergold PJ, Furhang R, Lawless S. Treating traumatic brain injury with minocycline[J]. Neurotherapeutics, 2023, 20(6): 1546-1564. DOI: 10.1007/s13311-023-01426-9.
|
[23] |
Sangobowale M, Nikulina E, Bergold PJ. Minocycline plus N-acetylcysteine protect oligodendrocytes when first dosed 12 hours after closed head injury in mice[J]. Neurosci Lett, 2018, 682: 16-20. DOI: 10.1016/j.neulet.2018.06.010.
|
[24] |
中华医学会儿科学分会临床药理学组,国家儿童健康与疾病临床医学研究中心,中华医学会儿科学分会呼吸学组合理用药协作组,等.儿童常见呼吸系统疾病免疫调节剂合理使用专家共识(2024年版)[J]. 中国实用儿科杂志, 2024, 39(11): 801-809. DOI: 10.19538/j.ek2024110601.
|
[25] |
Kilbaugh TJ, Bhandare S, Lorom DH, et al. Cyclosporin A preserves mitochondrial function after traumatic brain injury in the immature rat and piglet[J]. J Neurotrauma, 2011, 28(5): 763-774. DOI: 10.1089/neu.2010.1635.
|
[26] |
Hansson MJ, Elmér E. Cyclosporine as therapy for traumatic brain injury[J]. Neurotherapeutics, 2023, 20(6): 1482-1495. DOI: 10.1007/s13311-023-01414-z.
|
[27] |
Brines ML, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury[J]. Proc Natl Acad Sci USA, 2000, 97(19): 10526-10531. DOI: 10.1073/pnas.97.19.10526.
|
[28] |
Peng W, Xing Z, Yang J, et al. The efficacy of erythropoietin in treating experimental traumatic brain injury: a systematic review of controlled trials in animal models[J]. J Neurosurg, 2014, 121(3): 653-664. DOI: 10.3171/2014.6.Jns132577.
|
[29] |
|
[30] |
Chen X, Chen C, Fan S, et al. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury[J]. J Neuroinflammation, 2018, 15(1): 116. DOI: 10.1186/s12974-018-1151-3.
|
[31] |
|
[32] |
Lee JM, Jeong SW, Kim MY, et al. The effect of vitamin D supplementation in patients with acute traumatic brain injury[J]. World Neurosurg, 2019, 126: e1421-e1426. DOI: 10.1016/j.wneu.2019.02.244.
|
[33] |
Tang H, Hua F, Wang J, et al. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury[J]. Brain Inj, 2015, 29(10): 1165-1174. DOI: 10.3109/02699052.2015.1035330.
|
[34] |
Barbre AB, Hoane MR. Magnesium and riboflavin combination therapy following cortical contusion injury in the rat[J]. Brain Res Bull, 2006, 69(6): 639-646. DOI: 10.1016/j.brainresbull.2006.03.009.
|
[35] |
Smith AC, Holden RC, Rasmussen SM, et al. Effects of nicotinamide on spatial memory and inflammation after juvenile traumatic brain injury[J]. Behav Brain Res, 2019, 364: 123-132. DOI: 10.1016/j.bbr.2019.02.024.
|
[36] |
Chen W, Man X, Zhang Y, et al. Medial prefrontal cortex oxytocin mitigates epilepsy and cognitive impairments induced by traumatic brain injury through reducing neuroinflammation in mice[J]. Sci Rep, 2023, 13(1): 5214. DOI: 10.1038/s41598-023-32351-8.
|
[37] |
Mairesse J, Zinni M, Pansiot J, et al. Oxytocin receptor agonist reduces perinatal brain damage by targeting microglia[J]. Glia, 2019, 67(2): 345-359. DOI: 10.1002/glia.23546.
|
[38] |
Osier N, McGreevy E, Pham L, et al. Melatonin as a therapy for traumatic brain injury: a review of published evidence[J]. Int J Mol Sci, 2018, 19(5): 1539. DOI: 10.3390/ijms19051539.
|
[39] |
Wang J, Jiang C, Zhang K, et al. Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway[J]. Free Radic Biol Med, 2019, 131: 345-355. DOI: 10.1016/j.freeradbiomed.2018.12.014.
|
[40] |
Ding K, Wang H, Xu J, et al. Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: the Nrf2-ARE signaling pathway as a potential mechanism[J]. Free Radic Biol Med, 2014, 73: 1-11. DOI: 10.1016/j.freeradbiomed.2014.04.031.
|
[41] |
Yang SH, Gangidine M, Pritts TA, et al. Interleukin 6 mediates neuroinflammation and motor coordination deficits after mild traumatic brain injury and brief hypoxia in mice[J]. Shock, 2013, 40(6): 471-475. DOI: 10.1097/shk.0000000000000037.
|
[42] |
Clark IA, Vissel B. Broader insights into understanding tumor necrosis factor and neurodegenerative disease pathogenesis infer new therapeutic approaches[J]. J Alzheimers Dis, 2021, 79(3): 931-948. DOI: 10.3233/jad-201186.
|
[43] |
Okuma Y, Wake H, Teshigawara K, et al. Anti-high mobility group box 1 antibody therapy may prevent cognitive dysfunction after traumatic brain injury[J]. World Neurosurg, 2019, 122: e864-e871. DOI: 10.1016/j.wneu.2018.10.164.
|
[44] |
|
[45] |
Liu X, Zhao Z, Ji R, et al. Inhibition of P2X7 receptors improves outcomes after traumatic brain injury in rats[J]. Purinergic Signal, 2017, 13(4): 529-544. DOI: 10.1007/s11302-017-9579-y.
|
[46] |
|
[47] |
Wallisch JS, Simon DW, Bayır H, et al. Cerebrospinal fluid NLRP3 is increased after severe traumatic brain injury in infants and children[J]. Neurocrit Care, 2017, 27(1): 44-50. DOI: 10.1007/s12028-017-0378-7.
|
[48] |
Ismael S, Nasoohi S, Ishrat T. MCC950, the selective inhibitor of nucleotide oligomerization domain-like receptor protein-3 inflammasome, protects mice against traumatic brain injury[J]. J Neurotrauma, 2018, 35(11): 1294-1303. DOI: 10.1089/neu.2017.5344.
|
[49] |
Zhang LM, Xin Y, Wu ZY, et al. STING mediates neuroinflammatory response by activating NLRP3-related pyroptosis in severe traumatic brain injury[J]. J Neurochem, 2022, 162(5): 444-462. DOI: 10.1111/jnc.15678.
|
[50] |
Ge X, Li W, Huang S, et al. The pathological role of NLRs and AIM2 inflammasome-mediated pyroptosis in damaged blood-brain barrier after traumatic brain injury[J]. Brain Res, 2018, 1697: 10-20. DOI: 10.1016/j.brainres.2018.06.008.
|
[51] |
Yang X, Chen L, Pu J, et al. Guideline of clinical neurorestorative treatment for brain trauma (2022 China version)[J]. J Neurorestoratology, 2022, 10(2): 100005. DOI: 10.1016/j.jnrt.2022.100005.
|
[52] |
Caplan HW, Prabhakara KS, Toledano Furman NE, et al. Combination therapy with Treg and mesenchymal stromal cells enhances potency and attenuation of inflammation after traumatic brain injury compared to monotherapy[J]. Stem Cells, 2021, 39(3): 358-370. DOI: 10.1002/stem.3320
|
[53] |
Wen L, Wang YD, Shen DF, et al. Exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation after traumatic brain injury[J]. Neural Regen Res, 2022, 17(12): 2717-2724. DOI: 10.4103/1673-5374.339489.
|
[54] |
Zhong L, Wang J, Wang P, et al. Neural stem cell-derived exosomes and regeneration: cell-free therapeutic strategies for traumatic brain injury[J]. Stem Cell Res Ther, 2023, 14(1): 198. DOI: 10.1186/s13287-023-03409-1.
|