切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2025, Vol. 11 ›› Issue (02) : 75 -85. doi: 10.3877/cma.j.issn.2095-9141.2025.02.002

颅脑与神经功能修复

GRP75在创伤性颅脑损伤所致神经炎症中的机制研究
马行远1, 孙洪涛2, 王景景2, 任党利2, 李泽萌2, 丁晓3, 张宇航1, 邓廷桢1, 陈月阳1, 王淑莹2, 杨以太2, 王贺孔2, 郑茂华4,()   
  1. 1. 730000 兰州,兰州大学第一临床医学院
    2. 300162 天津,中国人民武装警察部队特色医学中心神经创伤及修复研究所
    3. 400000 重庆,重庆武警总队医院神经外科
    4. 730000 兰州,兰州大学第一医院神经外科
  • 收稿日期:2024-11-24 出版日期:2025-04-15
  • 通信作者: 郑茂华
  • 基金资助:
    天津市教委科研计划项目(2022YGYB08)

Mechanism of GRP75 in neuroinflammation caused by traumatic brain injury

Xingyuan Ma1, Hongtao Sun2, Jingjing Wang2, Dangli Ren2, Zemeng Li2, Xiao Ding3, Yuhang Zhang1, Tingzhen Deng1, Yueyang Chen1, Shuying Wang2, Yitai Yang2, Hekong Wang2, Maohua Zheng4,()   

  1. 1. First Clinical Medical School of Lanzhou University, Lanzhou 730000, China
    2. Institute of Neurotrauma and Repair, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin 300162, China
    3. Department of Neurosurgery,Chongqing Armed Police Corps Hospital, Chongqing 400000, China
    4. Department of Neurosurgery, First Hospital of Lanzhou University, Lanzhou 730000, China
  • Received:2024-11-24 Published:2025-04-15
  • Corresponding author: Maohua Zheng
引用本文:

马行远, 孙洪涛, 王景景, 任党利, 李泽萌, 丁晓, 张宇航, 邓廷桢, 陈月阳, 王淑莹, 杨以太, 王贺孔, 郑茂华. GRP75在创伤性颅脑损伤所致神经炎症中的机制研究[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 75-85.

Xingyuan Ma, Hongtao Sun, Jingjing Wang, Dangli Ren, Zemeng Li, Xiao Ding, Yuhang Zhang, Tingzhen Deng, Yueyang Chen, Shuying Wang, Yitai Yang, Hekong Wang, Maohua Zheng. Mechanism of GRP75 in neuroinflammation caused by traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2025, 11(02): 75-85.

目的

利用转录组测序技术和生物信息学分析方法研究脂多糖(LPS)对小胶质细胞系BV2细胞基因表达水平的影响,探讨创伤性颅脑损伤(TBI)所致神经炎症中葡萄糖调节蛋白75(GRP75)的功能与作用机制。

方法

选择BV2小胶质细胞进行实验,将细胞随机分为对照组和LPS组,对照组不做任何处理,LPS组给予1 μg/mL LPS处理6 h,每个实验分组均设置3个生物学重复,对2组细胞进行转录组测序,采用生物信息学分析方法筛选显著差异表达基因(DEGs),并对显著DEGs进行聚类分析,分析GRP75在体外细胞神经炎症模型中表达量的改变。利用定量聚合酶链式反应(qPCR)和Western blotting对GRP75的表达量进行验证。选取15只健康雄性SD大鼠,构建TBI及Sham大鼠模型,按照双随机数字表法分为假手术组(Sham组)、TBI 3 d组、TBI 7 d组、TBI 14 d组、TBI 28 d组,每组3只。利用Western blotting检测不同时段GRP75的表达情况。为研究GRP75在神经炎症中的作用机制,分别设计了GRP75过表达实验和GRP75抑制实验。在GRP75过表达实验中,将BV2细胞转染空载质粒(Vector)和GRP75过表达质粒(GRP75-OE),分为Vector组、GRP75-OE组、Vector+LPS组和GRP75-OE+LPS组;在GRP75抑制剂处理实验中,使用5 μg/mL GRP75抑制剂MKT-077处理BV2细胞18 h,将细胞分为CON组、MKT-077组、LPS组和LPS-MKT-077组。Western blotting检测各组细胞中诱导型一氧化氮合酶(iNOS)、环氧合酶-2(COX-2)及磷酸化核因子κB P65亚基(NF-κB P65)的蛋白水平,分析GRP75过表达和抑制对NF-κB通路的影响。

结果

转录组学质谱分析显示,LPS组中GRP75蛋白的表达水平显著低于对照组,差异有统计学意义(P<0.05);在BV2细胞神经炎症模型中,LPS组的GRP75蛋白表达水平明显低于对照组,差异有统计学意义(P<0.05)。在TBI大鼠脑组织中,与Sham组相比,TBI 3 d组、TBI 7 d组、TBI 14 d组和TBI 28 d组的GRP75蛋白相对表达量均下降,差异均有统计学意义(P<0.05)。在GRP75发挥抑炎作用机制中,GRP75过表达实验显示,与Vector+LPS组相比,GRP75-OE+LPS组iNOS、COX-2、磷酸化NF-κB P65的表达水平均显著降低,差异有统计学意义(P<0.05);GRP75抑制剂处理实验显示,与LPS组相比,MKT-077+LPS组iNOS、COX-2、磷酸化NF-κB P65表达水平均上调,差异有统计学意义(P<0.05)。

结论

GRP75在TBI大鼠脑组织及体外神经炎症模型中表达下调,GRP75过表达可显著减轻神经炎症的水平,其机制可能是通过NF-κB信号通路实现的,从而减轻TBI后的神经炎症并减少继发性损伤。因此,GRP75可能在TBI中发挥保护作用,并有望成为减轻TBI诱导的神经炎症的潜在治疗靶点。

Objective

To investigate the effects of lipopolysaccharide (LPS) on gene expression levels in the BV2 microglial cell line using transcriptome sequencing and bioinformatics analysis, and to explore the function and mechanism of glucose-regulated protein 75 (GRP75) in neuroinflammation induced by traumatic brain injury (TBI).

Methods

BV2 cells were selected for the experiment and randomly divided into the control group and an LPS group. The control group did not receive any treatment, while the LPS group was treated with 1 μg/mL LPS for 6 h. Three biological replicates were set up for each experimental group. Transcriptome sequencing was performed on the two groups of cells.Bioinformatics analysis was used to screen for significantly differentially expressed genes (DEGs), and cluster analysis was performed on the significant DEGs to analyze the changes in the expression level of GRP75 in an in vitro cellular neuroinflammation model. The expression level of GRP75 was validated using qPCR and Western blotting. Fifteen healthy male SD rats were selected to construct TBI and Sham rat models. They were divided into sham operation group (Sham group), TBI 3 d group, TBI 7 d group, TBI 14 d group, and TBI 28 d group according to the double random number table method, with three rats in each group. Western blotting was used to detect the expression of GRP75 at different time periods. To investigate the mechanism of action of GRP75 in neuroinflammation, GRP75 overexpression experiments and GRP75 inhibition experiments were designed separately. In the GRP75 overexpression experiment,BV2 cells were transfected with empty vector plasmid (Vector) and GRP75 overexpression plasmid(GRP75-OE), and divided into Vector group, GRP75-OE group, Vector+LPS group, and GRP75-OE+LPS group; In the GRP75 inhibitor treatment experiment, BV2 cells were treated with 5 μg/mL GRP75 inhibitor MKT-077 for 18 h, and the cells were divided into CON group, MKT-077 group, LPS group, and LPS-MKT-077 group. Western blotting was used to detect the protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and phosphorylated nuclear factor kappa B P65 subunit(NF-κB P65) in each group of cells, and the effects of GRP75 overexpression and inhibition on the NF-κB pathway were analyzed.

Results

Transcriptomic analysis indicated that GRP75 protein expression levels in the LPS group were significantly lower than those in the control group (P<0.05). Validation experiments showed that GRP75 expression in the the LPS group was significantly lower than that in the control group (P<0.05). In TBI rat brain tissues, compared with the Sham group, the relative expression levels of GRP75 protein decreased in the TBI 3 d group, TBI 7 d group, TBI 14 d group, and TBI 28 d group (P<0.05). In experiments exploring the anti-inflammatory mechanism of GRP75, overexpression experiments of GRP75 showed that iNOS, COX-2, and phosphorylated NF-κB P65 levels were significantly reduced in the GRP75-OE+LPS group compared to the Vector+LPS group (P<0.05). The GRP75 inhibitor treatment experiment showed that iNOS, COX-2, and phosphorylated NF-κB P65 levels were significantly increased in the MKT-077+LPS group compared to the LPS group (P<0.05).

Conclusions

GRP75 expression is downregulated in TBI rat brain tissues and in vitro neuroinflammation models. Overexpression of GRP75 significantly reduces neuroinflammation, potentially by modulating the NF-κB pathway, thereby alleviating neuroinflammation following TBI and reducing secondary damage. GRP75 may therefore play a protective role in TBI and serve as a potential therapeutic target for mitigating TBI-induced neuroinflammation.

表1 RT-qPCR基因引物序列信息
Tab.1 Sequences of gene primers for RT-qPCR
图1 LPS刺激后BV2细胞转录组学测序结果 A:主成分分析显示2个不同簇之间的区别;B:聚类分析显示神经炎症BV2细胞模型基因表达差异;C:差异基因在神经炎症BV2细胞模型和对照组之间显著变化的火山图;LPS:脂多糖
Fig.1 Transcriptomic sequencing results of BV2 cells after LPS stimulation
图2 LPS刺激BV2小胶质细胞后差异基因的GO和KEGG通路分析及差异蛋白表达分布图 A:GO功能富集分析;B:KEGG分析;C:差异蛋白表达分布图(小提琴图)显示GRP75在神经炎症表达情况(P<0.05,n=3);GO:基因本体论;KEGG:京都基因与基因组百科全书;GRP75:葡萄糖调节蛋白75;LPS:脂多糖
Fig.2 GO and KEGG pathway analysis of differentially expressed genes and violin plot of differentially expressed proteins in BV2 microglial cells after LPS stimulation
图3 LPS组和对照组的GRP75和炎症因子相对表达量比较 A:GRP75;B:IL-1β;C:IL-6;D:TNF-α;LPS组与对照组比较,P<0.05;LPS:脂多糖;GRP75:葡萄糖调节蛋白75;IL-1β:白介素-1β;IL-6:白介素-6;TNF-α:肿瘤坏死因子α
Fig.3 Comparison of relative expression levels of GRP75 and inflammatory factors between LPS group and control group
图4 GRP75在BV2细胞模型中的表达情况 A:Western blotting电泳条带图;B:LPS组和对照组GRP75蛋白的半定量比较结果(P<0.05);LPS:脂多糖;GRP75:葡萄糖调节蛋白75
Fig.4 Expression of GRP75 in BV2 cell model
图5 GRP75在TBI动物模型中的表达情况 A:Western blotting电泳条带图;B:不同时间点TBI大鼠脑组织中GRP75蛋白的半定量比较结果;与Sham组比较,aP<0.05;LPS:脂多糖;GRP75:葡萄糖调节蛋白75;TBI:创伤性颅脑损伤
Fig.5 Expression of GRP75 in TBI animal model
图6 GRP75质粒转染后BV2细胞中GRP75和炎症因子的表达情况 A:Western blotting电泳条带图;B:Vector组和GRP75-OE组GRP75蛋白的半定量比较结果(n=3,P<0.05);C:Vector组和GRP75-OE组的GRP75基因表达量比较;GRP75:葡萄糖调节蛋白75
Fig.6 Expression of GRP75 and inflammatory factors in BV2 cells after transfection with GRP75 plasmid
图7 qPCR检测LPS诱导GRP75质粒转染BV2细胞后炎症因子分泌情况 与Vector组比较,aP<0.05;与Vector+LPS组比较,bP<0.05;LPS:脂多糖;IL-1β:白介素1β
Fig.7 qPCR detection of inflammatory cytokine secretion in BV2 cells after LPS induced transfection of GRP75 plasmid
图8 GRP75过表达对神经炎症细胞模型中iNOS、COX-2及磷酸化NF-κB P65表达的影响 A:Western blotting电泳条带图;B~C:Vector组、GRP75-OE组、Vector+LPS组和GRP75-OE+LPS组中iNOS(B)、COX-2(C)及磷酸化NF-κB P65(D)蛋白的半定量比较结果(n=3);与Vector组比较,aP<0.05;与Vector+LPS组比较,bP<0.05;GRP75:葡萄糖调节蛋白75;LPS:脂多糖;iNOS:诱导型一氧化氮合酶;COX-2:环氧合酶-2;NF-κB P65:核因子κB P65亚基
Fig.8 Effect of GRP75 overexpression on the expression of iNOS, COX-2, and phosphorylated NF-κB P65 in the neuroinflammation cell model
图9 GRP75抑制对神经炎症细胞模型中iNOS、COX-2及磷酸化NF-κB P65表达的影响 A:Western blotting电泳条带图;B~D:CON组、MKT-077组、LPS组和MKT-077+LPS组中iNOS(B)、COX-2(C)、磷酸化NF-κB P65(D)蛋白的半定量比较结果(n=3);与CON组比较,aP<0.05;与MKT-077组比较,bP<0.05;与LPS组比较,cP<0.05;GRP75:葡萄糖调节蛋白75;LPS:脂多糖;iNOS:诱导型一氧化氮合酶;COX-2:环氧合酶-2;NF-κB P65:核因子κB P65亚基
Fig.9 Effect of GRP75 inhibition on the expression of iNOS, COX-2, and phosphorylated NF-κB P65 in the neuroinflammation cell model
[1]
Jiang J Y, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295. DOI: 10.1016/S1474-4422(18)30469-1.
[2]
Hansson MJ, Elmér E. Cyclosporine as therapy for traumatic brain injury[J]. Neurotherapeutics, 2023, 20(6): 1482-1495. DOI: 10.1007/s13311-023-01414-z.
[3]
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?[J]. Nat Rev Neurol,2021, 17(3): 157-172. DOI: 10.1038/s41582-020-00435-y.
[4]
Jurcau A, Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies[J]. Int J Mol Sci, 2021, 23(1): 14. DOI: 10.3390/ijms 23010014.
[5]
Liu TW, Chen CM, Chang KH. Biomarker of neuroinflammation in Parkinson's disease[J]. Int J Mol Sci, 2022, 23(8): 4148. DOI:10.3390/ijms23084148.
[6]
Lyu LJ, Li J, Qiao HB, et al. Overexpression of GRP75 inhibits inflammation in a rat model of intracerebral hemorrhage[J]. Mol Med Rep, 2017, 15(3): 1368-1372. DOI: 10.3892/mmr.2017.6126.
[7]
Honrath B, Metz I, Bendridi N, et al. Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells[J]. Cell Death Discov, 2017, 3: 17076.DOI: 10.1038/cddiscovery.2017.76.
[8]
Szabadkai G, Bianchi K, Várnai P, et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels[J]. J Cell Biol, 2006, 175(6): 901-911. DOI: 10.1083/jcb.200608073.
[9]
Graner MW, Raynes DA, Bigner DD, et al. Heat shock protein 70-binding protein 1 is highly expressed in high-grade gliomas,interacts with multiple heat shock protein 70 family members, and specifically binds brain tumor cell surfaces[J]. Cancer Sci, 2009,100(10): 1870-1879. DOI: 10.1111/j.1349-7006.2009.01269.x.
[10]
Li Y, Li HY, Shao J, et al. Grp75 modulates endoplasmic reticulum-mitochondria coupling and accelerates Ca2+ -dependent endothelial cell apoptosis in diabetic retinopathy[J]. Biomolecules,2022, 12(12): 1778. DOI: 10.3390/biom12121778.
[11]
Voloboueva LA, Emery JF, Sun X, et al. Inflammatory response of microglial BV-2 cells includes a glycolytic shift and is modulated by mitochondrial glucose-regulated protein 75/mortalin[J]. FEBS Lett, 2013, 587(6): 756-762. DOI: 10.1016/j.febslet.2013.01.067.
[12]
Wang H, Zhou XM, Wu LY, et al. Aucubin alleviates oxidative stress and inflammation via Nrf2-mediated signaling activity in experimental traumatic brain injury[J]. J Neuroinflammation,2020, 17(1): 188. DOI: 10.1186/s12974-020-01863-9.
[13]
Martinez-Tapia RJ, Estrada-Rojo F, Lopez-Aceves TG, et al.Diurnal variation induces neurobehavioral and neuropathological differences in a rat model of traumatic brain injury[J]. Front Neurosci, 2020, 14: 564992. DOI: 10.3389/fnins.2020.564992.
[14]
Mustafa AG, Singh IN, Wang J, et al. Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals[J]. J Neurochem, 2010, 114(1): 271-280. DOI: 10.1111/j.1471-4159.2010.06749.x.
[15]
Gong QY, Cai L, Jing Y, et al. Urolithin A alleviates blood-brain barrier disruption and attenuates neuronal apoptosis following traumatic brain injury in mice[J]. Neural Regen Res, 2022, 17(9):2007-2013. DOI: 10.4103/1673-5374.335163.
[16]
Kalra S, Malik R, Singh G, et al. Pathogenesis and management of traumatic brain injury (TBI): role of neuroinflammation and antiinflammatory drugs[J]. Inflammopharmacology, 2022, 30(4): 1153-1166. DOI: 10.1007/s10787-022-01017-8.
[17]
Hegdekar N, Sarkar C, Bustos S, et al. Inhibition of autophagy in microglia and macrophages exacerbates innate immune responses and worsens brain injury outcomes[J]. Autophagy, 2023, 19(7):2026-2044. DOI: 10.1080/15548627.2023.2167689.
[18]
Hoter A, El-Sabban ME, Naim HY. The HSP90 family: structure,regulation, function, and implications in health and disease[J]. Int J Mol Sci, 2018, 19(9): 2560. DOI: 10.3390/ijms19092560.
[19]
Lv LJ, Li J, Qiao HB, et al. Overexpression of GRP75 inhibits inflammation in a rat model of intracerebral hemorrhage[J]. Mol Med Rep, 2017, 15(3): 1368-1372. DOI: 10.3892/mmr.2017.6126.
[20]
Yuan M, Gong M, He J, et al. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling[J]. Redox Biol, 2022,52102289. DOI: 10.1016/j.redox.2022.102289.
[21]
Cinelli MA, Do HT, Miley GP, et al. Inducible nitric oxide synthase: regulation, structure, and inhibition[J]. Med Res Rev,2020, 40(1): 158-189. DOI: 10.1002/med.21599.
[1] 刘岩, 赵沛妍, 田琳, 崔贺然, 狄娜, 李慧, 程颖. 新型OX40 抗体激动剂对NSCLC 人源化小鼠模型的抑制作用及机制分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 901-906.
[2] 张剑, 卢从华, 李江华, 林采余, 吴迪, 王治国, 聂乃夫, 何勇, 李力. 根据转录组学分析奥希替尼获得性耐药机制的研究[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 195-200.
[3] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[4] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[5] 张瑜廉, 党韩寒, 张传鹏, 何昆, 陈鹏宇, 张昀昇, 王在, 张黎, 于炎冰. 创伤性脑损伤急性期细胞焦亡关键分子的竞争性内源性RNA调控网络构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 5-16.
[6] 郭瑶, 吕伟, 肖爵贤, 吴利东, 程祖珏. 创伤性颅脑损伤后MOG抗体相关性脱髓鞘疾病二例报道并文献复习[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 62-65.
[7] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[8] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[9] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[10] 鹿海龙, 朱玉辐, 贺雪凤, 蔡廷江, 王栋, 朱圣玲, 张恩刚, 王策. 创伤性颅脑损伤二次手术的危险因素分析及预警模型构建[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 97-101.
[11] 刘彪, 巍山, 关永胜. 基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 22-27.
[12] 唐春雨, 李倩, 郭姗姗, 叶奇, 张丹. 创伤性颅脑损伤神经生理学特征[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 367-371.
[13] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
[14] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
[15] 陆静, 钟为慧, 赵杰, 曾玲晖. 髓系细胞触发受体2在β淀粉样蛋白病理致阿尔茨海默病中的作用机制[J/OL]. 中华老年病研究电子杂志, 2024, 11(01): 51-56.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?