切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (06) : 346 -350. doi: 10.3877/cma.j.issn.2095-9141.2022.06.006

临床研究

早产儿脑损伤与血清中Tau、TLR4变化水平的关系研究
罗洁1,(), 李杰1   
  1. 1. 617000 四川攀枝花,攀枝花市中西医结合医院儿科
  • 收稿日期:2022-09-06 出版日期:2022-12-15
  • 通信作者: 罗洁
  • 基金资助:
    四川省卫生和计划生育委员会科研课题(18PJ043)

Relationship between brain injury and changes of serum Tau and TLR4 levels in premature infants

Jie Luo1,(), Jie Li1   

  1. 1. Department of Pediatrics, Panzhihua Integrated Traditional Chinese and Western Medicine Hospital, Panzhihua 617000, China
  • Received:2022-09-06 Published:2022-12-15
  • Corresponding author: Jie Luo
引用本文:

罗洁, 李杰. 早产儿脑损伤与血清中Tau、TLR4变化水平的关系研究[J/OL]. 中华神经创伤外科电子杂志, 2022, 08(06): 346-350.

Jie Luo, Jie Li. Relationship between brain injury and changes of serum Tau and TLR4 levels in premature infants[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(06): 346-350.

目的

分析早产儿脑损伤(BIPI)血清中微管相关蛋白Tau和Toll样受体4(TLR4)表达水平及其与脑损伤严重程度的关系。

方法

收集攀枝花市中西医结合医院儿科自2018年10月至2020年5月出生的70例BIPI患儿作为脑损伤组,根据临床症状和头颅MRI检测结果,将其分为轻度脑白质损伤组(22例)、中度脑白质损伤组(27例)和重度脑白质损伤组(21例)。另选取同期出生的70例无脑损伤早产儿作为无脑损伤组。所有患儿均采用振幅整合脑电图(aEEG)监测BIPI脑功能。采用酶联免疫吸附测定(ELISA)法检测各组早产儿出生第1、3及7天血清Tau和TLR4蛋白表达水平。受试者工作特征(ROC)曲线分析血清Tau和TLR4水平对BIPI发生的预测价值。比较不同程度脑白质损伤早产儿血清Tau和TLR4的变化水平。

结果

无脑损伤组和脑损伤组患儿的性别比例、胎龄、出生体质量差异均无统计学意义(P>0.05)。脑损伤组患儿矫正胎龄足月时aEEG评分明显低于无脑损伤组,差异有统计学意义(P<0.05)。脑损伤组患儿出生后第1、3和7天的血清Tau和TLR4水平明显高于无脑损伤组,且随时间推移,血清Tau水平均逐渐下降,TLR4水平先升高后下降,差异均有统计学意义(P<0.05)。早产儿出生第1、3和7天联合检测血清Tau和TLR4水平对BIPI预测的AUC为0.639、0.930和0.887,其预测价值优于单项预测。各组患儿出生后第1、3及7天随着脑白质损伤程度的加重,血清Tau水平呈明显上升趋势,而血清TLR4水平在出生后3 d最高,差异均有统计学意义(P<0.05)。

结论

血清中Tau和TLR4表达与BIPI脑白质损伤程度有关,可作为评估BIPI病情发展程度。

Objective

To analyze the expression levels of microtubule-associated protein Tau and Toll-like receptor 4 (TLR4) in serum of preterm infants with brain injury (BIPI) and their relationship with the severity of brain injury.

Methods

A total of 70 BIPI born in Pediatrics Department of Panzhihua Integrated Traditional Chinese and Western Medicine Hospital from October 2018 to May 2020 were selected as the brain injury goup. According to clinical symptoms and examination results of head MRI, they were divided into mild brain white matter injury group (22 cases), moderate brain white matter injury group (27 cases) and severe brain white matter injury group (21 cases). Another 70 premature infants without brain injury born in the same period were selected as the non-brain injury group. The brain function of BIPI was monitored by amplitude integrated electroencephalogram (aEEG). On the 1st, 3rd and 7th day after birth, levels of serum microtubule-associated protein (Tau) and Toll-like receptor 4 (TLR4) in each group were detected by enzyme-linked immunosorbent assay (ELISA). The predictive value of serum Tau and TLR4 levels in different periods for BIPI was compared. The value of serum Tau and TLR4 levels in predicting the occurrence of BIPI was analyzed by receiver operating characteristic (ROC) curve. The changes in levels of serum Tau and TLR4 among premature infants with different degrees of brain white matter injury were compared.

Results

There was no significant difference in gender ratio, gestational age or birth weight between non-brain injury group and brain injury group (P>0.05). The aEEG score of full-term corrected gestational age in brain injury group was significantly lower than that in non-brain injury group (P < 0.05). On the 1st, 3rd and 7th day after birth, levels of serum Tau and TLR4 in brain injury group were significantly higher than those in non-brain injury group, and the level of serum Tau gradually decreased over time and the level of serum TLR4 increased first and then decreased. The AUC values predicted by BIPI by combined detection of serum Tau and TLR4 levels for preterm infants on the 1st, 3rd and 7th day after birth are 0.639, 0.930 and 0.887, which was better than the single prediction. On the 1st, 3rd and 7th day after birth, the level of serum Tau increased significantly with the severity of cerebral white matter injury and the level of serum TLR4 was the highest on the 3rd day after birth, the difference was statistically significant (P<0.05).

Conclusion

The expression of Tau and TLR4 in serum is related to the degree of cerebral white matter injury in children, which can be used to evaluate the progression of BIPI.

表1 2组早产儿的一般资料比较
表2 2组早产儿不同时期血清Tau和TLR4水平比较(ng/mL,±s
图1 血清Tau水平和TLR4水平预测早产儿脑损伤的ROC曲线A:Tau蛋白;B:TLR4蛋白;C:联合预测
表3 血清Tau和TLR4水平预测早产儿脑损伤的ROC曲线特征
表4 3组不同程度脑损伤BIPI患儿不同时期血清Tau和TLR4水平比较(ng/mL,±s
[1]
郑直,吴琳琳,洪昆峣, 等. 脐血生物学标志物与早产儿脑损伤的关系[J]. 中国妇幼保健, 2019, 34(11): 2517-2521.
[2]
Abdul Aziz AN, Thomas S, Murthy P, et al. Early inotropes use is associated with higher risk of death and/or severe brain injury in extremely premature infants[J]. J Matern Fetal Neonatal Med, 2020, 33(16): 2751-2758.
[3]
Shin MK, Vázquez-Rosa E, Koh Y, et al. Reducing acetylated tau is neuroprotective in brain injury[J]. Cell, 2021, 184(10): 2715-2732.e2723.
[4]
Pampuscenko K, Morkuniene R, Sneideris T, et al. Extracellular tau induces microglial phagocytosis of living neurons in cell cultures[J]. J Neurochem, 2020, 154(3): 316-329.
[5]
张成元,冯子鉴,滕平. Tau、TLR9mRNA表达与胎盘病理改变及早产儿脑损伤的关系[J]. 中国优生与遗传杂志, 2020, 28(8): 979-982.
[6]
孙勇,刘武,张维, 等. 二甲双胍对2型糖尿病并发神经病理性疼痛大鼠的抗痛觉异常作用及机制研究[J]. 中华神经医学杂志, 2021, 20(12): 1194-1203.
[7]
Yin Y, Wu X, Peng B, et al. Curcumin improves necrotising microscopic colitis and cell pyroptosis by activating SIRT1/NRF2 and inhibiting the TLR4 signalling pathway in newborn rats[J]. Innate Immun, 2020, 26(7): 609-617.
[8]
李晨媛,孙圣荣. Toll样受体4与恶性肿瘤关系研究进展[J]. 中华实用诊断与治疗杂志, 2019, 33(10): 1025-1028.
[9]
中国医师协会新生儿专业委员会. 早产儿脑损伤诊断与防治专家共识[J]. 中国当代儿科杂志, 2012, 14(12): 883-884.
[10]
隋邦森,吴恩惠,陈雁冰. 磁共振诊断学[M]. 北京: 人民卫生出版社, 1994: 463-465.
[11]
中华医学会儿科学分会围产专业委员会. 新生儿振幅整合脑电图临床应用专家共识[J]. 中华新生儿科杂志(中英文), 2019, 34(1): 3-7.
[12]
刘冉,叶黎离,王军. 血清24S-HC及其联合S100-β、NSE在早产儿脑损伤及预后评估中的预测价值[J]. 四川医学, 2022, 43(4): 378-382.
[13]
Wolf HT, Huusom LD, Henriksen TB, et al. Magnesium sulphate for fetal neuroprotection at imminent risk for preterm delivery: a systematic review with meta-analysis and trial sequential analysis[J]. BJOG, 2020, 127(10): 1180-1188.
[14]
Nicholson EG, Piedra PA. Premature infants with respiratory syncytial virus (RSV): the need for both maternal and pediatric RSV prevention strategies[J]. J Infect Dis, 2020, 222(7): 1070-1072.
[15]
赵莹,徐艳,吴铭, 等. pNF-H、MMP-9联合aEEG对早产儿脑损伤的早期预测价值[J]. 中国生育健康杂志, 2021, 32(4): 324-329.
[16]
Horie K, Barthélemy NR, Sato C, et al. CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer's disease[J]. Brain, 2021, 144(2): 515-527.
[17]
Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer's disease[J]. Nat Neurosci, 2020, 23(10): 1183-1193.
[18]
Savastano A, Flores D, Kadavath H, et al. Disease-associated tau phosphorylation hinders tubulin assembly within tau condensates[J]. Angew Chem Int Ed Engl, 2021, 60(2): 726-730.
[19]
Barthélemy NR, Liu H, Lu W, et al. Sleep deprivation affects tau phosphorylation in human cerebrospinal fluid[J]. Ann Neurol, 2020, 87(5): 700-709.
[20]
Hadi F, Akrami H, Shahpasand K, et al. Wnt signalling pathway and tau phosphorylation: a comprehensive study on known connections[J]. Cell Biochem Funct, 2020, 38(6): 686-694.
[21]
Arlen AM, Dudley AG, Kieran K. Association of spina bifida with cancer[J]. Transl Androl Urol, 2020, 9(5): 2358-2369.
[22]
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling[J]. Cell Mol Life Sci, 2021, 78(4): 1233-1261.
[23]
Karimy JK, Reeves BC, Kahle KT. Targeting TLR4-dependent inflammation in post-hemorrhagic brain injury[J]. Expert Opin Ther Targets, 2020, 24(6): 525-533.
[24]
Zheng Q, Martin RC, Shi X, et al. Lack of FGF21 promotes NASH-HCC transition via hepatocyte-TLR4-IL-17A signaling[J]. Theranostics, 2020, 10(22): 9923-9936.
[25]
Wu L, Du L, Ju Q, et al. Silencing TLR4/MyD88/NF-κB signaling pathway alleviated inflammation of corneal epithelial cells infected by ISE[J]. Inflammation, 2021, 44(2): 633-644.
[26]
Song S, Pan Y, Li H, et al. MiR-1202 Exerts neuroprotective effects on OGD/R induced inflammation in HM cell by negatively regulating rab1a involved in TLR4/NF-κB signaling pathway[J]. Neurochem Res, 2020, 45(5): 1120-1129.
[1] 雷丽莉, 于晓峰, 王媛媛, 徐迎军. 人鼻病毒感染喘息急性发作儿童外周血NLRP3和TLR4水平及临床意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 440-445.
[2] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[3] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[4] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[5] 吴东阳, 林向丹, 石佐林, 赵玉龙, 王振, 文安国, 纪鑫, 李俊之, 赵明光. NF-L、NLRP3、S100B 蛋白在颅脑损伤严重程度及预后评估中的应用价值[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 279-285.
[6] 罗磊, 熊建平, 郑宏伟, 王嗣嵩, 柴祥, 吴青, 潘海鹏. 静脉留置针穿刺引流治疗颅骨修补术后硬膜外积液一例报道[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 315-317.
[7] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[8] 从长春, 王春琳, 武孝刚, 王金标, 章福彬, 孙磊, 王李. 重型颅脑损伤患者呼吸机相关性肺炎的危险因素及病原学分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 151-157.
[9] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[10] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[11] 王如海, 王绅, 张敏, 李春, 韩超, 于强, 胡海成, 李习珍. 重型创伤性脑损伤患者去骨瓣减压术后短期死亡风险的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 285-291.
[12] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[13] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
[14] 王燕, 梁海乾, 郭姗姗. 炎症小体在创伤性脑损伤中作用的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 177-181.
[15] 李润东, 豆小文, 张秀明. 失笑散联合胃复春治疗慢性萎缩性胃炎的疗效及对血清免疫受体和炎症因子水平的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 470-473.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?