切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2023, Vol. 09 ›› Issue (05) : 261 -269. doi: 10.3877/cma.j.issn.2095-9141.2023.05.002

基础研究

染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用
朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标()   
  1. 110016 沈阳,北部战区总医院神经外科
  • 收稿日期:2023-03-05 出版日期:2023-10-15
  • 通信作者: 梁国标

Impact of genistein on early brain injury following subarachnoid hemorrhage in mice via the SIRT1/p53 signaling pathway

Zechao Zhu, Xinyu Yang, Youcheng Li, Pengyu Pan, Guobiao Liang()   

  1. Department of Neurosurgery, Hospital of the Northern Theater Command, Shenyang 110016, China
  • Received:2023-03-05 Published:2023-10-15
  • Corresponding author: Guobiao Liang
  • Supported by:
    National Natural Science Foundation of China(81971133)
引用本文:

朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.

Zechao Zhu, Xinyu Yang, Youcheng Li, Pengyu Pan, Guobiao Liang. Impact of genistein on early brain injury following subarachnoid hemorrhage in mice via the SIRT1/p53 signaling pathway[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(05): 261-269.

目的

探讨染料木黄酮(genistein)对蛛网膜下腔出血(SAH)后早期脑损伤(EBI)的影响和作用机制。

方法

选取成年雄性C57BL/6J小鼠156只,采用血管内穿刺的方法建立小鼠SAH模型。预实验:选取72只小鼠,设置两个时间点24、72 h,每个时间点36只。将每个时间点的小鼠随机分为6组:假手术组(Sham)、模型组(SAH)、溶剂组(SAH+Vehicle)、低剂量组(genistein 5 mg/kg)、中剂量组(genistein 15 mg/kg)、高剂量组(genistein 30 mg/kg),每组6只,分别对SAH后24、72 h的SAH分级、神经功能、脑水含量进行评估,确定药物最佳注射剂量。先选取54只小鼠随机分为3组:假手术组(Sham)、模型组(SAH)、模型+染料木黄酮组(SAH+genistein),每组18只。采用伊文思蓝检测血脑屏障通透性,Tunel染色观察神经元凋亡的情况,Western blot检测凋亡相关蛋白、血脑屏障相关蛋白的表达。而后选取30只小鼠随机分为5组:假手术组(Sham)、溶剂组(SAH+Vehicle)、模型+染料木黄酮组(SAH+genistein)、模型+染料木黄酮+溶剂组(SAH+genistein+DMSO)、模型+染料木黄酮+抑制剂组(SAH+genistein+Sirtinol),每组6只。采用Western blot检测SIRT1、p53、AC p53的蛋白表达水平。

结果

(1)SAH后24、72 h,中、高剂量组的出血量评分和脑水含量较溶剂组均明显下降,Garcia评分和平衡木实验评分均明显升高,其中中剂量组的作用最为显著,因此选用染料木黄酮15 mg/kg进行后续实验。(2)SAH后24 h,与模型组比较,模型+染料木黄酮组的伊文思蓝渗出量降低,ZO-1、Occludin和Claudin-5蛋白表达增加,差异均有统计学意义(P<0.05)。Tunel染色和Western blot检测结果显示,与模型组比较,模型+染料木黄酮组神经元凋亡率降低,凋亡蛋白Caspase-3、Cleaved Caspase-3、Bax表达减少,抗凋亡蛋白Bcl-2增加,差异均有统计学意义(P<0.05)。(3)SAH后24 h,与溶剂组比较,模型+染料木黄酮组SIRT1蛋白表达显著增加,p53、AC p53蛋白表达均显著降低,差异均有统计学意义(P<0.05);与模型+染料木黄酮+溶剂组相比,模型+染料木黄酮+抑制剂组的SIRT1蛋白表达显著下降,p53、AC p53蛋白表达显著增加,差异均有统计学意义(P<0.05)。

结论

染料木黄酮可以通过SIRT1/p53信号通路,减轻脑水肿和神经元凋亡的作用,改善小鼠SAH后的EBI,对SAH具有显著的治疗意义。

Objective

To investigate the effect and mechanism of genistein on early brain injury (EBI) following subarachnoid hemorrhage (SAH).

Methods

A total of 156 male C57BL/6J mice were selected and the mouse SAH model was established using intravascular puncture. Pre experiment: 72 mice were selected and set at two time points of 24 and 72 h, with 36 mice at each time point. Mice at each time point were randomly divided into 6 groups: Sham group, SAH group, solvent group (SAH+Vehicle), low dose group (genistein 5 mg/kg), medium dose group (genistein 15 mg/kg), and high dose group(genistein 30 mg/kg), with 6 mice in each group. The SAH grading, neurological function, and brain water content at 24 and 72 h after SAH were evaluated to determine the optimal injection dose of the drug. After that, 54 mice were randomly divided into three groups: Sham group, SAH group and SAH+genistein group, with 18 mice in each group. The permeability of blood-brain barrier was measured by measuring the extravasation of Evans blue. Tunel staining was used to observe cell apoptosis. Western blot was used to verify the expression of apoptosis-related proteins and blood-brain barrier related proteins. Then, 30 mice were randomly divided into 5 groups, including Sham group, SAH+Vehicle group, SAH+genistein group, SAH+genistein+DMSO group, SAH+genistein+Sirtinol group, with 6 mice in each group. Western blot was used to verify the protein levels of SIRT1, p53 and AC p53.

Results

(1) At 24 and 72 h after SAH, the bleeding volume score and brain water content of the medium and high dose groups were significantly reduced compared to the solvent group, while the Garcia score and balance beam experiment score were significantly increased. Among them, the effect of the medium dose group was the most significant. Therefore, 15 mg/kg of genistein was selected for subsequent experiments. (2) After 24 h of SAH, compared with the SAH group, the Evans blue exudation in the SAH+genistein group decreased, and the protein expression of ZO-1, Occludin, and Claudin-5 increased, with statistical significance (P<0.05). The results of Tunel staining and Western blot analysis showed that compared with the SAH group, the SAH+genistein group had a lower neuronal apoptosis rate, decreased expression of apoptotic proteins Caspase-3, Cleared Caspase-3, and Bax, and increased expression of anti apoptotic protein Bcl-2, with statistical significance (P<0.05). (3) After 24 h of SAH, compared with the SAH+Vehicle group, the SAH+genistein group showed a significant increase in SIRT1 protein expression, while the expression of p53 and AC p53 proteins decreased significantly, with statistical significance (P<0.05); Compared with the SAH+genistein+DMSO group, the SIRT1 protein expression in the SAH+genistein+Sirtinol group significantly decreased, while the expression of p53 and AC p53 proteins significantly increased, with statistical significance (P<0.05).

Conclusion

Genistan can regulate SIRT1/p53 signaling pathway, reduce cerebral edema and neuronal cell apoptosis, and improve EBI after SAH in mice, which has significant therapeutic significance for SAH.

图1 6组小鼠SAH后24、72 h SAH分级评分、神经功能评分以及脑水含量比较A:SAH后24 h SAH分级评分;B:SAH后24 h Garcia评分;C:SAH后24 h平衡木实验评分;D:SAH后24 h脑水含量;E:SAH后72 h SAH分级评分;F:SAH后72 h Garcia评分;G:SAH后72 h平衡木实验评分;H:SAH后72 h脑水含量;与假手术组比较,aP<0.05;与溶剂组比较,bP<0.05;SAH:蛛网膜下腔出血
Fig.1 Comparison of SAH grading score, neurological function score, and brain water content in 6 groups of mice after SAH at 24 and 72 h
图2 3组小鼠SAH后24 h的伊文思蓝渗出率及血脑屏障相关蛋白表达的比较A:小鼠脑大体图;B:伊文思蓝渗出量;C:ZO-1、Occludin和Claudin-5蛋白表达的Western blot条带;D:ZO-1蛋白表达的定量分析;E:Occludin蛋白表达的定量分析;F:Claudin-5蛋白表达的定量分析;与假手术组比较,aP<0.05;与模型组比较,bP<0.05;SAH:蛛网膜下腔出血
Fig.2 Comparison of Evans blue exudation rate and blood-brain barrier related protein expression in three groups at 24 h after SAH
图3 Tunel染色检验染料木黄酮在SAH后24 h对神经元凋亡的影响A:3组小鼠脑组织神经元凋亡染色图(×400),箭头示凋亡的阳性神经元;B:3组小鼠神经元凋亡率比较;与假手术组比较,aP<0.05;与模型组比较,bP<0.05;SAH:蛛网膜下腔出血
Fig.3 Tunel staining examine the results and quantification of genistein on neuronal apoptosis at 24 h after SAH
图4 Western blot检测3组小鼠SAH后24 h凋亡相关蛋白的表达A:Caspase-3、Cleaved Caspase-3、Bax和Bcl-2蛋白表达的Western blot条带;B:Caspase-3蛋白表达的定量分析;C:Cleaved Caspase-3蛋白表达的定量分析;D:Bax蛋白表达的定量分析;E:Bcl-2蛋白表达的定量分析;与假手术组比较,aP<0.05;与模型组比较,bP<0.05;SAH:蛛网膜下腔出血
Fig.4 Western blot detection of apoptosis-related protein expression in three groups at 24 h after SAH
图5 Western blot检测5组小鼠SAH后24 h SIRT1、p53和AC p53蛋白的表达A:SIRT1、p53和AC p53蛋白表达的Western blot条带;B:SIRT1蛋白表达的定量分析;C:p53蛋白表达的定量分析;D:AC p53蛋白表达的定量分析;与假手术组比较,aP<0.05;与溶剂组比较,bP<0.05;与模型+染料木黄酮+溶剂组比较,cP<0.05;SAH:蛛网膜下腔出血
Fig.5 Western blot detection of SIRT1, p53, and AC p53 protein expression in five groups at 24 h after SAH
[1]
Long B, Koyfman A, Runyon MS. Subarachnoid hemorrhage: updates in diagnosis and management[J]. Emerg Med Clin North Am, 2017, 35(4): 803-824. DOI: 10.1016/j.emc.2017.07.001.
[2]
Dodd WS, Noda I, Martinez M, et al. NLRP3 inhibition attenuates early brain injury and delayed cerebral vasospasm after subarachnoid hemorrhage[J]. J Neuroinflammation, 2021, 18(1): 163. DOI: 10.1186/s12974-021-02207-x.
[3]
Jiang Y, Chen D, Gong Q, et al. Elucidation of SIRT-1/PGC-1alpha-associated mitochondrial dysfunction and autophagy in nonalcoholic fatty liver disease[J]. Lipids Health Dis, 2021, 20(1): 40. DOI: 10.1186/s12974-021-02207-x.
[4]
Kumar A, Chauhan S. How much successful are the medicinal chemists in modulation of SIRT1: a critical review[J]. Eur J Med Chem, 2016, 119: 45-69. DOI: 10.1016/j.ejmech.2016.04.063.
[5]
Wu HJ, Chan WH. Genistein protects methylglyoxal-induced oxidative DNA damage and cell injury in human mononuclear cells[J]. Toxicol In Vitro, 2007, 21(3): 335-342. DOI: 10.1016/j.tiv.2006.09.002.
[6]
Sato Y, Itagaki S, Oikawa S, et al. Protective effect of soy isoflavone genistein on ischemia-reperfusion in the rat small intestine[J]. Biol Pharm Bull, 2011, 34(9): 1448-1454. DOI: 10.1248/bpb.34.1448.
[7]
Li WF, Yang K, Zhu P, et al. Genistein ameliorates ischemia/reperfusion-induced renal injury in a SIRT1-dependent manner[J]. Nutrients, 2017, 9(4): 403. DOI: 10.3390/nu9040403.
[8]
Zhang XS, Wu Q, Wu LY, et al. Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats[J]. Cell Death Dis, 2016, 7(10): e2416. DOI: 10.1038/cddis.2016.292.
[9]
Muroi C, Fujioka M, Marbacher S, et al. Mouse model of subarachnoid hemorrhage: technical note on the filament perforation model[J]. Acta Neurochir Suppl, 2015, 120: 315-320. DOI: 10.1007/978-3-319-04981-6_54.
[10]
Chen Y, Zhang Y, Tang J, et al. Norrin protected blood-brain barrier via frizzled-4/β-catenin pathway after subarachnoid hemorrhage in rats[J]. Stroke, 2015, 46(2): 529-536. DOI: 10.1161/STROKEAHA.114.007265.
[11]
Zhang Y, Yang X, Ge X, et al. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice[J]. Biomed Pharmacother, 2019, 109: 726-733. DOI: 10.1016/j.biopha.2018.10.161.
[12]
Li G, Dong Y, Liu D, et al. NEK7 coordinates rapid neuroinflammation after subarachnoid hemorrhage in mice[J]. Front Neurol, 2020, 11: 551. DOI: 10.3389/fneur.2020.00551.
[13]
王栋, 吴环立, 高飞, 等. 血清HIF-2α、miR-21表达与动脉瘤性蛛网膜下腔出血患者介入栓塞术后脑血管痉挛的关系[J]. 中华神经医学杂志, 2021, 20(4): 340-345. DOI: 10.3760/cma.j.cn115354-20200306-00147.
[14]
Kelly G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1[J]. Altern Med Rev, 2010, 15(3): 245-263.
[15]
Abd El-Fatah IM, Abdelrazek HMA, Ibrahim SM, et al. Dimethyl fumarate abridged tauo-/amyloidopathy in a D-galactose/ovariectomy-induced Alzheimer's-like disease: modulation of AMPK/SIRT-1, AKT/CREB/BDNF, AKT/GSK-3β, adiponectin/Adipo1R, and NF-κB/IL-1β/ROS trajectories[J]. Neurochem Int, 2021, 148: 105082. DOI: 10.1016/j.neuint.2021.105082.
[16]
Sharma N, Shandilya A, Kumar N, et al. Dysregulation of SIRT-1 signaling in multiple sclerosis and neuroimmune disorders: a systematic review of SIRTUIN activators as potential immunomodulators and their influences on other dysfunctions[J]. Endocr Metab Immune Disord Drug Targets, 2021, 21(10): 1845-1868. DOI: 10.2174/1871530321666210309112234.
[17]
Hsu HT, Yang YL, Chang WH, et al. Hyperbaric oxygen therapy improves parkinson's disease by promoting mitochondrial biogenesis via the SIRT-1/PGC-1α Pathway[J]. Biomolecules, 2022, 12(5): 661. DOI: 10.3390/biom12050661.
[18]
Yan W, Fang Z, Yang Q, et al. SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain[J]. J Cereb Blood Flow Metab, 2013, 33(3): 396-406. DOI: 10.1038/jcbfm.2012.179.
[19]
Becatti M, Taddei N, Cecchi C, et al. SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes[J]. Cell Mol Life Sci, 2012, 69(13): 2245-2260. DOI: 10.1007/s00018-012-0925-5.
[20]
Wang X, Simpson ER, Brown KA. p53: Protection against tumor growth beyond effects on cell cycle and apoptosis[J]. Cancer Res, 2015, 75(23): 5001-5007. DOI: 10.1158/0008-5472.CAN-15-0563.
[21]
林发牧, 邓燕婷, 梁玉明, 等. CLSPN在胶质瘤中的表达及生物学功能[J]. 中华神经创伤外科电子杂志, 2021, 7(4): 235-241. DOI: 10.3877/cma.j.issn.2095-9141.2021.04.009.
[22]
Palmer JE, Sant Cassia LJ, Irwin CJ, et al. P53 and bcl-2 assessment in serous ovarian carcinoma[J]. Int J Gynecol Cancer, 2008, 18(2): 241-248. DOI: 10.1111/j.1525-1438.2007.01000.x.
[23]
Kotipatruni RR, Dasari VR, Veeravalli KK, et al. p53- and Bax-mediated apoptosis in injured rat spinal cord[J]. Neurochem Res, 2011, 36(11): 2063-2074. DOI: 10.1007/s11064-011-0530-2.
[24]
Wang J, Thomas HR, Li Z, et al. Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis[J]. Cell Death Dis, 2021, 12(7): 659. DOI: 10.1038/s41419-021-03902-6.
[25]
Ma W, Yuan L, Yu H, et al. Genistein as a neuroprotective antioxidant attenuates redox imbalance induced by beta-amyloid peptides 25-35 in PC12 cells[J]. Int J Dev Neurosci, 2010, 28(4): 289-295. DOI: 10.1016/j.ijdevneu.2010.03.003.
[26]
Wang X, Chen S, Ma G, et al. Genistein protects dopaminergic neurons by inhibiting microglial activation[J]. Neuroreport, 2005, 16(3): 267-270. DOI: 10.1097/00001756-200502280-00013.
[27]
Cortina B, Torregrosa G, Castelló-Ruiz M, et al. Improvement of the circulatory function partially accounts for the neuroprotective action of the phytoestrogen genistein in experimental ischemic stroke[J]. Eur J Pharmacol, 2013, 708(1-3): 88-94. DOI: 10.1016/j.ejphar.2013.02.016.
[28]
Claassen J, Carhuapoma JR, Kreiter KT, et al. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome[J]. Stroke, 2002, 33(5): 1225-1232. DOI: 10.1161/01.str.0000015624.29071.1f.
[29]
Suzuki H, Hasegawa Y, Kanamaru K, et al. Mechanisms of osteopontin-induced stabilization of blood-brain barrier disruption after subarachnoid hemorrhage in rats[J]. Stroke, 2010, 41(8): 1783-1790. DOI: 10.1161/STROKEAHA.110.586537.
[30]
Xiao X, Sun S, Li Y, et al. Geniposide attenuates early brain injury by inhibiting oxidative stress and neurocyte apoptosis after subarachnoid hemorrhage in rats[J]. Mol Biol Rep, 2022, 49(7): 6303-6311. DOI: 10.1007/s11033-022-07438-6.
[31]
Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier[J]. Cell Mol Neurobiol, 2000, 20(1): 57-76. DOI: 10.1023/a:1006995910836.
[32]
Chen W, Jiang L, Hu Y, et al. Ferritin reduction is essential for cerebral ischemia-induced hippocampal neuronal death through p53/SLC7A11-mediated ferroptosis[J]. Brain Res, 2021, 1752: 147216. DOI: 10.1016/j.brainres.2020.147216.
[33]
Yan W, Fang Z, Yang Q, et al. SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain[J]. J Cereb Blood Flow Metab, 2013, 33(3): 396-406. DOI: 10.1038/jcbfm.2012.179.
[34]
Qian C, Jin J, Chen J, et al. SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model[J]. Mol Med Rep, 2017, 16(6): 9627-9635. DOI: 10.3892/mmr.2017.7773.
[1] 张梦雨, 文华轩, 曾晴, 陈琮瑛, 李胜利. 胎儿蛛网膜下腔出血产前超声诊断新方法[J]. 中华医学超声杂志(电子版), 2022, 19(05): 396-404.
[2] 李晓东, 王汉宇. 脑动脉瘤破裂并发额叶脑出血的手术治疗[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 126-127.
[3] 潘鹏宇, 孔睿, 李侑埕, 李佳朔, 杨新宇, 张文旭, 朱泽超, 田学实, 闻亮, 朱廷准, 梁国标. 无创脑电磁扰动在蛛网膜下腔出血术后脱水治疗中的应用研究[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 351-355.
[4] 张东, 梁宗星, 陈来照. 颅内动脉瘤术中侧脑室穿刺损伤的危险因素分析[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 355-358.
[5] 曹炜, 王翠雪, 徐珊珊, 袁媛, 张琳琳, 周建新. 不同头高位对aSAH患者术后颅内压及脑灌注压的影响[J]. 中华重症医学电子杂志, 2022, 08(02): 121-125.
[6] 李文虎, 付帅, 武玉亮, 王磊, 孔凡强, 陈卫光, 边玉松, 陈永安, 丛大伟. 动脉瘤性蛛网膜下腔出血后认知功能障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(02): 115-119.
[7] 王如海, 孙菲琳, 杨震, 韩超, 于强, 胡海成. 硬膜下积液厚度对创伤性硬膜下积液转化为慢性硬膜下血肿的预测价值[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 227-231.
[8] 黄富, 刘康峰, 常婉贞, 赵振林, 唐瑜晨, 王国兴, 肖华. 蛛网膜下腔出血患者脑脊液神经元特异性烯醇化酶水平变化及临床意义[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(02): 97-100.
[9] 李敬峰, 赵林波, 倪恒, 贾振宇, 曹月洲, 施海彬, 刘圣. 颅内动脉瘤破裂合并脑室出血的危险因素分析[J]. 中华介入放射学电子杂志, 2022, 10(04): 404-407.
[10] 庄宗, 祝琦, 那世杰, 刘涛, 凌海平, 张玉华, 曹博强, 杭春华, 张庆荣. 破裂性小脑后下动脉远端动脉瘤的个体化治疗策略[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 200-206.
[11] 张钰, 张湘斌, 黄晓松, 潘晓彦. 亚低温联合脑室穿刺引流对老年性高分级动脉瘤性蛛网膜下腔出血患者脑血管状态的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 214-220.
[12] 付永鹏, 拉巴索朗, 马强, 陈群超, 郑裕峰, 吴蕻, 郑圆杰, 胡婧, 于洮, 张东. 人工智能辅助CT血管成像脑血管重建在基层医院颅内动脉瘤诊断中的应用[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 26-30.
[13] 朱旭, 郭翠霞, 魏洁, 张宁, 王喜旺, 于国渊. 脑灌注压联合血小板体积指数对颅内动脉瘤栓塞术后迟发性脑缺血的预测价值[J]. 中华脑血管病杂志(电子版), 2022, 16(06): 392-397.
[14] 陈仕检, 梁志坚. 肿瘤相关蛛网膜下腔出血的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(02): 115-119.
[15] 黄锦庆, 邹敏刚, 郭鸿华, 吴至武, 黄伟龙, 刘俊, 张柏林, 胡坤, 叶新运, 张震宇, 杨瑞金, 蒋秋华. 脑外伤性与医源性颅内假性动脉瘤的临床特点及其血管内治疗的效果分析(附7例报道)[J]. 中华脑血管病杂志(电子版), 2020, 14(06): 346-351.
阅读次数
全文


摘要