切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (01) : 1 -5. doi: 10.3877/cma.j.issn.2095-9141.2022.01.001

所属专题: 文献

述评

生物组装类脑生态位促进神经再生修复展望
徐如祥1,(), 邱文乔1   
  1. 1. 610072 成都,四川省医学科学院·四川省人民医院神经外科
  • 收稿日期:2021-11-12 出版日期:2022-02-15
  • 通信作者: 徐如祥

Prospect of bio assembled brain-like niche promoting nerve regeneration and repair

Ruxiang Xu1(), Wenqiao Qiu1   

  • Received:2021-11-12 Published:2022-02-15
  • Corresponding author: Ruxiang Xu
引用本文:

徐如祥, 邱文乔. 生物组装类脑生态位促进神经再生修复展望[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 1-5.

Ruxiang Xu, Wenqiao Qiu. Prospect of bio assembled brain-like niche promoting nerve regeneration and repair[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(01): 1-5.

随着神经再生医学的快速发展,基于神经生态位重塑原理的内源性与外源性复合神经修复技术,开启了神经再生修复新方向。内源性神经修复是"唤醒"激活特定脑区的神经干细胞(NSCs),并向损伤灶区迁徙修复神经损伤。外源性神经修复是向脑损伤灶区移植足量的外源性NSCs,修复神经功能缺失。生物组装类脑生态位重塑,解决了神经修复过程中各种再生细胞属性演变及其微环境调控的多维信息解码问题,逆转再生修复障碍,阐释神经修复的有序调控。本文就此问题作一述评。

[1]
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the global burden of disease study 2017[J]. Lancet, 2019, 394(10204): 1145-1158.
[2]
Li Z, Jiang Y, Li H, et al. China’s response to the rising stroke burden[J]. BMJ, 2019, 364: l879.
[3]
Macas J, Nern C, Plate KH, et al. Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain[J]. J Neurosci, 2006, 26(50): 13114-13119.
[4]
Martí-Fàbregas J, Romaguera-Ros M, Gómez-Pinedo U, et al. Proliferation in the human ipsilateral subventricular zone after ischemic stroke[J]. Neurology, 2010, 74(5): 357-365.
[5]
Kokaia Z, Lindvall O. Neurogenesis after ischaemic brain insults[J]. Curr Opin Neurobiol, 2003, 13(1): 127-132.
[6]
Tsai PT, Ohab JJ, Kertesz N, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery[J]. J Neurosci, 2006, 26(4): 1269-1274.
[7]
Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model[J]. J Clin Invest, 2004, 114(3): 330-338.
[8]
Huang L, Wong S, Snyder EY, et al. Human neural stem cells rapidly ameliorate symptomatic inflammation in early-stage ischemic-reperfusion cerebral injury[J]. Stem Cell Res Ther, 2014, 5(6): 129.
[9]
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
[10]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
[11]
Xin H, Li Y, Cui Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats[J]. J Cereb Blood Flow Metab, 2013, 33(11): 1711-1715.
[12]
Yuan Q, Li XD, Zhang SM, et al. Extracellular vesicles in neurodegenerative diseases: insights and new perspectives[J]. Genes Dis, 2019, 8(2): 124-132.
[13]
Lv B, Li F, Han J, et al. Hif-1α overexpression improves transplanted bone mesenchymal stem cells survival in rat MCAO stroke model[J]. Front Mol Neurosci, 2017, 10: 80.
[14]
Watanabe T, Nagai A, Sheikh AM, et al. A human neural stem cell line provides neuroprotection and improves neurological performance by early intervention of neuroinflammatory system[J]. Brain Res, 2016, 1631: 194-203.
[15]
Chang YJ, Tsai CJ, Tseng FG, et al. Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior[J]. Nanomedicine, 2013, 9(3): 345-355.
[16]
Ma W, Shao X, Zhao D, et al. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation[J]. ACS Appl Mater Interfaces, 2018, 10(9): 7892-7900.
[17]
Kim KR, Jegal H, Kim J, et al. A self-assembled DNA tetrahedron as a carrier for in vivo liver-specific delivery of siRNA[J]. Biomater Sci, 2020, 8(2): 586-590.
[18]
Jullienne A, Badaut J. Molecular contributions to neurovascular unit dysfunctions after brain injuries: lessons for target-specific drug development[J]. Future Neurol, 2013, 8(6): 677-689.
[19]
Shihabuddin LS, Horner PJ, Ray J, et al. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus[J]. J Neurosci, 2000, 20(23): 8727-8735.
[20]
Zhang G, Li Y, Reuss JL, et al. Stable intracerebral transplantation of neural stem cells for the treatment of paralysis due to ischemic stroke[J]. Stem Cells Transl Med, 2019, 8(10): 999-1007.
[21]
Willand MP, Rosa E, Michalski B, et al. Electrical muscle stimulation elevates intramuscular BDNF and GDNF mRNA following peripheral nerve injury and repair in rats[J]. Neuroscience, 2016, 334: 93-104.
[22]
Fan Y, Shen F, Frenzel T, et al. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice[J]. Ann Neurol, 2010, 67(4): 488-497.
[23]
Kojima T, Hirota Y, Ema M, et al. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum[J]. Stem Cells, 2010, 28(3): 545-554.
[24]
Buga AM, Margaritescu C, Scholz CJ, et al. Transcriptomics of post-stroke angiogenesis in the aged brain[J]. Front Aging Neurosci, 2014, 6: 44.
[25]
Shen WC, Liang CJ, Wu VC, et al. Endothelial progenitor cells derived from Wharton's jelly of the umbilical cord reduces ischemia-induced hind limb injury in diabetic mice by inducing HIF-1α/IL-8 expression[J]. Stem Cells Dev, 2013, 22(9): 1408-1418.
[26]
Langer R, Vacanti JP. Tissue engineering[J]. Science, 1993, 260(5110): 920-926.
[27]
Guillotin B, Guillemot F. Cell patterning technologies for organotypic tissue fabrication[J]. Trends Biotechnol, 2011, 29(4): 183-190.
[28]
Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising the definition of an evolving field[J]. Biofabrication, 2016, 8(1): 013001.
[29]
Yu Y, Zhang Y, Martin JA, et al. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels[J]. J Biomech Eng, 2013, 135(9): 91011.
[30]
Zheng W, Ge Y, Ren S, et al. Abnormal static and dynamic functional connectivity of resting-state fMRI in multiple system atrophy[J]. Aging (Albany NY), 2020, 12(16): 16341-16356.
[1] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[2] 刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.
[3] 王泽宁, 侯博儒, 姜呈, 任海军. 小胶质细胞对神经干细胞调控机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(03): 172-176.
[4] 刘卓, 段虎斌. 生物电相关疗法在神经损伤修复中的应用进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 257-260.
[5] 王洋洋, 高谋, 徐如祥. 过敏毒素、小胶质以及神经干细胞在神经炎症和神经再生中的作用[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 193-198.
[6] 喻勇, 杨华, 徐卡娅. 胎儿脊柱裂的致病因素与治疗的研究进展[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 187-190.
[7] 梁雨婷, 胡悦, 赵安琪, 王沐榕, 孙建, 李力卓. 雌激素作用下神经干细胞移植治疗创伤性脑损伤的研究进展[J]. 中华神经创伤外科电子杂志, 2020, 06(06): 373-376.
[8] 高谋, 徐如祥, 董勤, 郭莉丽. CR2-Crry预处理诱导神经干细胞在颅脑损伤中发挥神经保护作用[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 215-220.
[9] 徐如祥. 3D打印细胞组装仿生神经生态位促进脑损伤神经修复的创新与发展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(03): 129-131.
[10] 李彦钊, 张绪新, 孙晶, 郎明非, 任刚, 邓东风. 基于微流控平台的胶质母细胞瘤干细胞中miRNA-874表达的研究[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(04): 205-208.
[11] 徐如祥, 杨超, 陈强, 张洪钿. 间充质干细胞治疗阿尔茨海默病的现状与展望[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(01): 1-5.
[12] 周庆忠, 冯晓兰, 何萍, 张戈, 赵茂, 白永恒, 冯大雄. 封闭Notch信号影响神经干细胞分化的体外研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 579-587.
[13] 王天仁, 张巧霞, 石瑶, 汤雯珺, 马捷. 神经干细胞在精神分裂症患者治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2020, 14(12): 1002-1008.
[14] 殷秀梅, 杨丽红, 姜涛, 杜元灏. 基于神经干细胞探讨巢蛋白在缺血性脑卒中中的作用机制及针刺效应[J]. 中华针灸电子杂志, 2023, 12(03): 111-116.
[15] 马晓瑭, 王艳, 李素青, 刘金花, 石雨萌, 潘群文. 富含miR-132-3p的神经干细胞释放的外泌体激活MEK1/2/-ERK1/2通路改善缺氧无糖诱导的脑微血管内皮细胞损伤[J]. 中华脑血管病杂志(电子版), 2022, 16(03): 172-181.
阅读次数
全文


摘要