切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 55 -57. doi: 10.3877/cma.j.issn.2095-9141.2024.01.009

综述

大语言模型在创伤性脑损伤病历书写的应用前景
朱先理1, 王守森2,()   
  1. 1. 310020 杭州,浙江大学邵逸夫医院神经外科
    2. 350025 福州,福建医科大学福总临床医学院神经外科
  • 收稿日期:2023-05-13 出版日期:2024-02-15
  • 通信作者: 王守森

Prospects of large language model in medical archive recording of traumatic brain injury

Xianli Zhu1, Shousen Wang2,()   

  1. 1. Department of Neurosurgery, Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou 310020, China
    2. Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China
  • Received:2023-05-13 Published:2024-02-15
  • Corresponding author: Shousen Wang
引用本文:

朱先理, 王守森. 大语言模型在创伤性脑损伤病历书写的应用前景[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 55-57.

Xianli Zhu, Shousen Wang. Prospects of large language model in medical archive recording of traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(01): 55-57.

大语言模型(LLM)作为一种自然语言处理技术,目前已广泛应用于临床病历书写。LLM可以快速地将复杂冗长甚至十分凌乱的询问记录归纳整理,将无序的叙述转变为结构化的学术性语言,生成基本合乎规范的病史记录。创伤性脑损伤(TBI)是神经外科常见急症,LLM的出现为TBI的病史书写带来重大变革,可显著提高临床医生的工作效率,并能快速建立个体化的治疗方案。LLM作为新生事物,在临床应用时可能遇到各种问题,在临床伦理、法规等方面需要同步研究推进。本文汇总了近期发表的相关文献,并就LLM在协助完成TBI临床文书方面的优势、应用前景以及目前存在的问题展开综述。

The large language model (LLM), as a natural language processing technique, has been widely used in clinical medical record writing. The application of LLM can quickly summarize and organize complex, lengthy, and even very messy inquiry records, transforming unordered narratives into structured academic language, and generating basically standardized medical history records. Traumatic brain injury (TBI) is a common emergency in neurosurgery, and the emergence of LLM may bring significant changes to the medical history of TBI, significantly improving the work efficiency of clinical doctors and enabling the rapid establishment of personalized treatment plans. As a new tool of artificial intelligence, LLM may encounter various problems in clinical application, and requires synchronous research and promotion in clinical ethics, regulations, and other aspects. This article summarizes recent published literature and provides a review of the advantages, application prospects, and current issues of LLM in assisting in the completion of TBI clinical documents.

[1]
Xue VW, Lei P, Cho WC. The potential impact of ChatGPT in clinical and translational medicine[J]. Clin Transl Med, 2023, 13(3): e1216. DOI: 10.1002/ctm2.1216.
[2]
Patel SB, Lam K. ChatGPT: the future of discharge summaries?[J] Lancet Digit Health, 2023, 5(3): e107-e108. DOI: 10.1016/S2589-7500(23)00021-3.
[3]
Aydın Ö, Karaarslan E. OpenAI ChatGPT generated literaturereview: digital twin in healthcare[G]//Aydin Ö(Ed.). Emerging Computer Technologies 2. Izmir, Turkey: İzmir Akademi Dernegi, 2022: 22-31.
[4]
Sharif-Alhoseini M, Khodadadi H, Chardoli M, et al. Indications for brain computed tomography scan after minor head injury[J]. J Emerg Trauma Shock, 2011, 4(4): 472-476. DOI: 10.4103/0974-2700.86631.
[5]
Gülşen I, Ak H, Karadaş S, et al. Indications of brain computed tomography scan in children younger than 3 years of age with minor head trauma[J]. Emerg Med Int, 2014, 2014: 248967. DOI: 10.1155/2014/248967.
[6]
Pons E, Foks KA, Dippel DWJ, et al. Impact of guidelines for the management of minor head injury on the utilization and diagnostic yield of CT over two decades, using natural language processing in a large dataset[J]. Eur Radiol, 2019, 29(5): 2632-2640. DOI: 10.1007/s00330-018-5954-5.
[7]
King MR. The future of AI in medicine: a perspective from a Chatbot[J]. Ann Biomed Eng, 2023, 51(2): 291-295. DOI: 10.1007/s10439-022-03121-w.
[8]
Taigman M. Overcoming secondary stress in medical and nursing practice: a guide to professional resilience and personal well-being[J]. JEMS, 2006, 31(5): 158-158. DOI: 10.1016/S0197-2510(06)70404-1.
[9]
张华,刘广明,刘国成,等.基于决策树法构建创伤性颅脑损伤术后硬脑膜下积液的风险预测模型[J].中华神经创伤外科电子杂志, 2023, 9(1): 19-25. DOI: 10.3877/cma.j.issn.2095-9141.2023.01.004.
[10]
Li R, Kumar A, Chen JH. How Chatbots and large language model artificial intelligence systems will reshape modern medicine: fountain of creativity or Pandora's box?[J]. JAMA Intern Med, 2023, 183(6): 596-597. DOI: 10.1001/jamainternmed.2023.1835.
[11]
Dergaa I, Chamari K, Zmijewski P, et al. From human writing to artificial intelligence generated text: examining the prospects and potential threats of ChatGPT in academic writing[J]. Biol Sport, 2023, 40(2): 615-622. DOI: 10.5114/biolsport.2023.125623.
[12]
Tustumi F, Andreollo NA, Aguilar-Nascimento JE. Future of the language models in healthcare: the role of ChatGPT[J]. Arq Bras Cir Dig, 2023, 36: e1727. DOI: 10.1590/0102-672020230002e1727.
[13]
Gordijn B, Have HT. ChatGPT: evolution or revolution?[J]. Med Health Care Philos, 2023, 26(1): 1-2. DOI: 10.1007/s11019-023-10136-0.
[14]
van Dis EAM, Bollen J, Zuidema W, et al. ChatGPT: five priorities for research[J]. Nature, 2023, 614(7947): 224-226. DOI: 10.1038/d41586-023-00288-7.
[15]
Biswas S. ChatGPT and the future of medical writing[J]. Radiology, 2023, 307(2): e223312. DOI: 10.1148/radiol.223312.
[16]
Gilat R, Cole BJ. How will artificial intelligence affect scientific writing, reviewing and editing? The future is here…[J]. Arthroscopy, 2023, 39(5): 1119-1120. DOI: 10.1016/j.arthro.2023.01.014.
[17]
Dergaa I, Chamari K, Zmijewski P, et al. From human writing to artificial intelligence generated text: examining the prospects and potential threats of ChatGPT in academic writing[J]. Biol Sport, 2023, 40(2): 615-622. DOI: 10.5114/biolsport.2023.125623.
[18]
Kitamura FC. ChatGPT is shaping the future of medical writing but still requires human judgment[J]. Radiology, 2023, 307(2): e230171. DOI: 10.1148/radiol.230171.
[19]
Oduro S, Moss E, Metcalf J. Obligations to assess: recent trends in AI accountability regulations[J]. Patterns (NY), 2022, 3(11): 100608. DOI: 10.1016/j.patter.2022.100608.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[5] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[6] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[7] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[8] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[9] 苏博兴, 肖博, 李建兴. 2024年美国泌尿外科学会年会结石领域手术治疗相关热点研究及解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 303-308.
[10] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[11] 王洪, 王骏华, 范建楠. 人工智能技术在肩袖损伤中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 356-361.
[12] 王如海, 王绅, 张敏, 李春, 韩超, 于强, 胡海成, 李习珍. 重型创伤性脑损伤患者去骨瓣减压术后短期死亡风险的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 285-291.
[13] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 张玮玮, 霍晓川. 人工智能时代医学生批判性思维培养的重要性[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 357-359.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?