切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 55 -57. doi: 10.3877/cma.j.issn.2095-9141.2024.01.009

综述

大语言模型在创伤性脑损伤病历书写的应用前景
朱先理1, 王守森2,()   
  1. 1. 310020 杭州,浙江大学邵逸夫医院神经外科
    2. 350025 福州,福建医科大学福总临床医学院神经外科
  • 收稿日期:2023-05-13 出版日期:2024-02-15
  • 通信作者: 王守森

Prospects of large language model in medical archive recording of traumatic brain injury

Xianli Zhu1, Shousen Wang2,()   

  1. 1. Department of Neurosurgery, Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou 310020, China
    2. Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China
  • Received:2023-05-13 Published:2024-02-15
  • Corresponding author: Shousen Wang
引用本文:

朱先理, 王守森. 大语言模型在创伤性脑损伤病历书写的应用前景[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 55-57.

Xianli Zhu, Shousen Wang. Prospects of large language model in medical archive recording of traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(01): 55-57.

大语言模型(LLM)作为一种自然语言处理技术,目前已广泛应用于临床病历书写。LLM可以快速地将复杂冗长甚至十分凌乱的询问记录归纳整理,将无序的叙述转变为结构化的学术性语言,生成基本合乎规范的病史记录。创伤性脑损伤(TBI)是神经外科常见急症,LLM的出现为TBI的病史书写带来重大变革,可显著提高临床医生的工作效率,并能快速建立个体化的治疗方案。LLM作为新生事物,在临床应用时可能遇到各种问题,在临床伦理、法规等方面需要同步研究推进。本文汇总了近期发表的相关文献,并就LLM在协助完成TBI临床文书方面的优势、应用前景以及目前存在的问题展开综述。

The large language model (LLM), as a natural language processing technique, has been widely used in clinical medical record writing. The application of LLM can quickly summarize and organize complex, lengthy, and even very messy inquiry records, transforming unordered narratives into structured academic language, and generating basically standardized medical history records. Traumatic brain injury (TBI) is a common emergency in neurosurgery, and the emergence of LLM may bring significant changes to the medical history of TBI, significantly improving the work efficiency of clinical doctors and enabling the rapid establishment of personalized treatment plans. As a new tool of artificial intelligence, LLM may encounter various problems in clinical application, and requires synchronous research and promotion in clinical ethics, regulations, and other aspects. This article summarizes recent published literature and provides a review of the advantages, application prospects, and current issues of LLM in assisting in the completion of TBI clinical documents.

[1]
Xue VW, Lei P, Cho WC. The potential impact of ChatGPT in clinical and translational medicine[J]. Clin Transl Med, 2023, 13(3): e1216. DOI: 10.1002/ctm2.1216.
[2]
Patel SB, Lam K. ChatGPT: the future of discharge summaries?[J] Lancet Digit Health, 2023, 5(3): e107-e108. DOI: 10.1016/S2589-7500(23)00021-3.
[3]
Aydın Ö, Karaarslan E. OpenAI ChatGPT generated literaturereview: digital twin in healthcare[G]//Aydin Ö(Ed.). Emerging Computer Technologies 2. Izmir, Turkey: İzmir Akademi Dernegi, 2022: 22-31.
[4]
Sharif-Alhoseini M, Khodadadi H, Chardoli M, et al. Indications for brain computed tomography scan after minor head injury[J]. J Emerg Trauma Shock, 2011, 4(4): 472-476. DOI: 10.4103/0974-2700.86631.
[5]
Gülşen I, Ak H, Karadaş S, et al. Indications of brain computed tomography scan in children younger than 3 years of age with minor head trauma[J]. Emerg Med Int, 2014, 2014: 248967. DOI: 10.1155/2014/248967.
[6]
Pons E, Foks KA, Dippel DWJ, et al. Impact of guidelines for the management of minor head injury on the utilization and diagnostic yield of CT over two decades, using natural language processing in a large dataset[J]. Eur Radiol, 2019, 29(5): 2632-2640. DOI: 10.1007/s00330-018-5954-5.
[7]
King MR. The future of AI in medicine: a perspective from a Chatbot[J]. Ann Biomed Eng, 2023, 51(2): 291-295. DOI: 10.1007/s10439-022-03121-w.
[8]
Taigman M. Overcoming secondary stress in medical and nursing practice: a guide to professional resilience and personal well-being[J]. JEMS, 2006, 31(5): 158-158. DOI: 10.1016/S0197-2510(06)70404-1.
[9]
张华,刘广明,刘国成,等.基于决策树法构建创伤性颅脑损伤术后硬脑膜下积液的风险预测模型[J].中华神经创伤外科电子杂志, 2023, 9(1): 19-25. DOI: 10.3877/cma.j.issn.2095-9141.2023.01.004.
[10]
Li R, Kumar A, Chen JH. How Chatbots and large language model artificial intelligence systems will reshape modern medicine: fountain of creativity or Pandora's box?[J]. JAMA Intern Med, 2023, 183(6): 596-597. DOI: 10.1001/jamainternmed.2023.1835.
[11]
Dergaa I, Chamari K, Zmijewski P, et al. From human writing to artificial intelligence generated text: examining the prospects and potential threats of ChatGPT in academic writing[J]. Biol Sport, 2023, 40(2): 615-622. DOI: 10.5114/biolsport.2023.125623.
[12]
Tustumi F, Andreollo NA, Aguilar-Nascimento JE. Future of the language models in healthcare: the role of ChatGPT[J]. Arq Bras Cir Dig, 2023, 36: e1727. DOI: 10.1590/0102-672020230002e1727.
[13]
Gordijn B, Have HT. ChatGPT: evolution or revolution?[J]. Med Health Care Philos, 2023, 26(1): 1-2. DOI: 10.1007/s11019-023-10136-0.
[14]
van Dis EAM, Bollen J, Zuidema W, et al. ChatGPT: five priorities for research[J]. Nature, 2023, 614(7947): 224-226. DOI: 10.1038/d41586-023-00288-7.
[15]
Biswas S. ChatGPT and the future of medical writing[J]. Radiology, 2023, 307(2): e223312. DOI: 10.1148/radiol.223312.
[16]
Gilat R, Cole BJ. How will artificial intelligence affect scientific writing, reviewing and editing? The future is here…[J]. Arthroscopy, 2023, 39(5): 1119-1120. DOI: 10.1016/j.arthro.2023.01.014.
[17]
Dergaa I, Chamari K, Zmijewski P, et al. From human writing to artificial intelligence generated text: examining the prospects and potential threats of ChatGPT in academic writing[J]. Biol Sport, 2023, 40(2): 615-622. DOI: 10.5114/biolsport.2023.125623.
[18]
Kitamura FC. ChatGPT is shaping the future of medical writing but still requires human judgment[J]. Radiology, 2023, 307(2): e230171. DOI: 10.1148/radiol.230171.
[19]
Oduro S, Moss E, Metcalf J. Obligations to assess: recent trends in AI accountability regulations[J]. Patterns (NY), 2022, 3(11): 100608. DOI: 10.1016/j.patter.2022.100608.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 戴雨霖, 张新春. 人工智能在口腔修复诊疗中的应用与进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 65-69.
[3] 杨龙雨禾, 王跃强, 招云亮, 金溪, 卫娜, 杨智明, 张贵福. 人工智能辅助临床决策在泌尿系肿瘤的应用进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 178-182.
[4] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[5] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[6] 谢家兴, 李学民, 敖明昕. 人工智能在白内障诊断领域的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 361-365.
[7] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[8] 胡贤瑞, 伍振国, 何竟. 高压氧治疗创伤性脑损伤患者认知功能障碍疗效的Meta分析[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 21-36.
[9] 王守森, 方翌, 冯添顺, 魏梁锋. 深度学习模型在侵袭性垂体腺瘤诊疗中的应用[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 382-384.
[10] 谢森, 韩轶鹏, 秦至臻, 赵卫良, 毛更生. 脑损伤后慢性炎症反应致巨大占位效应一例报道[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 379-381.
[11] 邸志娟, 李红玲. HBOT在创伤性脑损伤患者中的应用及研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 373-378.
[12] 邱凯锋, 王则远, 何志超, 付凯利, 梅童霖, 关英杰, 高飞, 伍俊妍. 人工智能技术在超说明书用药循证中的应用研究[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1212-1218.
[13] 林绍涌, 朱先理, 魏梁锋, 王守森. ChatGPT在临床医学实践中的应用进展[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1113-1116.
[14] 王靖玺, 赵丽, 吕滨. 人工智能在肺栓塞CT检查中的临床研究进展[J]. 中华心脏与心律电子杂志, 2024, 12(01): 26-31.
[15] 胡陈玥, 葛贤秀, 邓雪婷, 姚家楠, 缪林. 图像增强放大内镜诊断胃癌前病变及早期胃癌[J]. 中华胃肠内镜电子杂志, 2024, 11(01): 47-51.
阅读次数
全文


摘要