[1] |
|
[2] |
Guo S, Han R, Chen F, et al. Epidemiological characteristics for patients with traumatic brain injury and the nomogram model for poor prognosis: an 18-year hospital-based study[J]. Front Neurol, 2023, 14: 1138217. DOI: 10.3389/fneur.2023.1138217.
|
[3] |
McCrea MA, Giacino JT, Barber J, et al. Functional outcomes over the first year after moderate to severe traumatic brain injury in the prospective, longitudinal TRACK-TBI study[J]. JAMA Neurol, 2021, 78(8): 982-992. DOI: 10.1001/jamaneurol.2021.2043.
|
[4] |
Godoy DA, Rubiano A, Rabinstein AA, et al. Moderate traumatic brain injury: the grey zone of neurotrauma[J]. Neurocrit Care, 2016, 25(2): 306-319. DOI: 10.1007/s12028-016-0253-y.
|
[5] |
Wu X, Sun Y, Xu X, et al. Mortality prediction in severe traumatic brain injury using traditional and machine learning algorithms[J]. J Neurotrauma, 2023, 40(13-14): 1366-1375. DOI: 10.1089/neu.2022.0221.
|
[6] |
Lang L, Wang T, Xie L, et al. An independently validated nomogram for individualised estimation of short-term mortality risk among patients with severe traumatic brain injury: a modelling analysis of the CENTER-TBI China registry study[J]. EClinicalMedicine, 2023, 59: 101975. DOI: 10.1016/j.eclinm.2023.101975.
|
[7] |
Zarei H, Vazirizadeh-Mahabadi M, Adel Ramawad H, et al. Prognostic value of CRASH and IMPACT models for predicting mortality and unfavorable outcome in traumatic brain injury; a systematic review and meta-analysis[J]. Arch Acad Emerg Med, 2023, 11(1): e27. DOI: 10.22037/aaem.v11i1.1885.
|
[8] |
Wang R, Yang DX, Ding J, et al. Classification, risk factors, and outcomes of patients with progressive hemorrhagic injury after traumatic brain injury[J]. BMC Neurol, 2023, 23(1): 68. DOI: 10.1186/s12883-023-03112-x.
|
[9] |
Wei X, Tang X, You D, et al. A clinical-radiomics based nomogram to predict progressive intraparenchymal hemorrhage in mild to moderate traumatic injury patients[J]. Eur J Radiol, 2023, 163: 110785. DOI: 10.1016/j.ejrad.2023.110785.
|
[10] |
Juratli TA, Zang B, Litz RJ, et al. Early hemorrhagic progression of traumatic brain contusions: frequency, correlation with coagulation disorders, and patient outcome: a prospective study[J]. J Neurotrauma, 2014, 31(17): 1521-1527. DOI: 10.1089/neu.2013.3241.
|
[11] |
Zhu Y, Xu L, Lin S, et al. Establishment and validation of a prediction model for intraparenchymal hematoma expansion in patients with cerebral contusion: a reliable Nomogram[J]. Clin Neurol Neurosurg, 2022, 212: 107079. DOI: 10.1016/j.clineuro.2021.107079.
|
[12] |
Tong WS, Zheng P, Zeng JS, et al. Prognosis analysis and risk factors related to progressive intracranial haemorrhage in patients with acute traumatic brain injury[J]. Brain Inj, 2012, 26(9): 1136-1142. DOI: 10.3109/02699052.2012.666437.
|
[13] |
Fair KA, Farrell DH, McCully BH, et al. Fibrinolytic activation in patients with progressive intracranialhemorrhage after traumatic brain injury[J]. J Neurotrauma, 2021, 38(8): 960-966. DOI: 10.1089/neu.2018.6234.
|
[14] |
Peng Q, Zhao J, Wang P, et al. Expressions of plasma cystatin C, D-dimer and hypersensitive C-reactive protein in patients with intracranial progressive hemorrhagic injury after craniocerebral injury, and their clinical significance[J]. Arq Neuropsiquiatr, 2019, 77(6): 381-386. DOI: 10.1590/0004-282x20190057.
|
[15] |
Gao G, Wu X, Feng J, et al. Clinical characteristics and outcomes in patients with traumatic brain injury in China: a prospective, multicentre, longitudinal, observational study[J]. Lancet Neurol, 2020, 19(8): 670-677. DOI: 10.1016/s1474-4422(20)30182-4.
|
[16] |
Yue JK, Satris GG, Dalle Ore CL, et al. Polytrauma is associated with increased three- and six-month disability after traumatic brain injury: a TRACK-TBI pilot study[J]. Neurotrauma Rep, 2020, 1(1): 32-41. DOI: 10.1089/neur.2020.0004.
|
[17] |
Chen T, Chen S, Wu Y, et al. A predictive model for postoperative progressive haemorrhagic injury in traumatic brain injuries[J]. BMC Neurol, 2022, 22(1): 16. DOI: 10.1186/s12883-021-02541-w.
|
[18] |
Wan X, Fan T, Wang S, et al. Progressive hemorrhagic injury in patients with traumatic intracerebral hemorrhage: characteristics, risk factors and impact on management[J]. Acta Neurochir (Wien), 2017, 159(2): 227-235. DOI: 10.1007/s00701-016-3043-6.
|
[19] |
|
[20] |
Wan X, Fan T, Wang S, et al. Progressive hemorrhagic injury in patients with traumatic intracerebral hemorrhage: characteristics, risk factors and impact on management[J]. Acta Neurochir (Wien), 2017, 159(2): 227-235. DOI: 10.1007/s00701-016-3043-6.
|
[21] |
Chojak R, Koźba-Gosztyła M, Pawłowski M, et al. Deterioration after mild traumatic brain injury: a single-center experience with cost analysis[J]. Front Neurol, 2021, 12: 588429. DOI: 10.3389/fneur.2021.588429.
|
[22] |
Fletcher-Sandersjöö A, Tatter C, Tjerkaski J, et al. Time course and clinical significance of hematoma expansion in moderate-to-severe traumatic brain injury: an observational cohort study[J]. Neurocrit Care, 2023, 38(1): 60-70. DOI: 10.1007/s12028-022-01609-w.
|
[23] |
Nagesh M, Patel KR, Mishra A, et al. Role of repeat CT in mild to moderate head injury: an institutional study[J]. Neurosurg Focus, 2019, 47(5): E2. DOI: 10.3171/2019.8.Focus19527.
|
[24] |
Deng L, Zhang G, Wei X, et al. Comparison of satellite sign and island sign in predicting hematoma growth and poor outcome in patients with primary intracerebral hemorrhage[J]. World Neurosurg, 2019, 127: e818-e825. DOI: 10.1016/j.wneu.2019.03.273.
|
[25] |
Huang YW, Yang MF. Combining investigation of imaging markers (island sign and blend sign) and clinical factors in predicting hematoma expansion of intracerebral hemorrhage in the basal ganglia[J]. World Neurosurg, 2018, 120: e1000-e1010. DOI: 10.1016/j.wneu.2018.08.214.
|
[26] |
|
[27] |
Hagemo JS, Stanworth S, Juffermans NP, et al. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study[J]. Crit Care, 2014, 18(2): R52. DOI: 10.1186/cc13798.
|
[28] |
Lyu K, Yuan Q, Fu P, et al. Impact of fibrinogen level on the prognosis of patients with traumatic brain injury: a single-center analysis of 2570 patients[J]. World J Emerg Surg, 2020, 15(1): 54. DOI: 10.1186/s13017-020-00332-1.
|
[29] |
Sabouri M, Vahidian M, Sourani A, et al. Efficacy and safety of fibrinogen administration in acute post-traumatic hypofibrinogenemia in isolated severe traumatic brain injury: a randomized clinical trial[J]. J Clin Neurosci, 2022, 101: 204-211. DOI: 10.1016/j.jocn.2022.05.016.
|
[30] |
Carvalho M, Rodrigues A, Gomes M, et al. Interventional algorithms for the control of coagulopathic bleeding in surgical, trauma, and postpartum settings: recommendations from the share network group[J]. Clin Appl Thromb Hemost, 2016, 22(2): 121-137. DOI: 10.1177/1076029614559773.
|
[31] |
Hayakawa M. Dynamics of fibrinogen in acute phases of trauma[J]. J Intensive Care, 2017, 5(1): 3. DOI: 10.1186/s40560-016-0199-3.
|
[32] |
Maegele M, Schochl H, Menovsky T, et al. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management[J]. Lancet Neurol, 2017, 16(8): 630-647. DOI: 10.1016/s1474-4422(17)30197-7.
|
[33] |
Schwarzmaier SM, Gallozzi M, Plesnila N. Identification of the vascular source of vasogenic brain edema following traumatic brain injury using in vivo 2-photon microscopy in mice[J]. J Neurotrauma, 2015, 32(13): 990-1000. DOI: 10.1089/neu.2014.3775.
|