切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2023, Vol. 09 ›› Issue (06) : 343 -349. doi: 10.3877/cma.j.issn.2095-9141.2023.06.005

临床研究

凝血指标对中型创伤性脑损伤患者进展性出血性损伤的预测能力
王如海(), 曹祥记, 王绅, 张敏, 韩超, 于强, 胡海成, 李习珍   
  1. 236000 阜阳,阜阳师范大学附属第二医院神经外科
    315336 宁波市杭州湾医院神经外科
    236112 阜阳,安徽医科大学附属阜阳医院检验科
  • 收稿日期:2023-02-14 出版日期:2023-12-15
  • 通信作者: 王如海

Predictive ability of coagulation tests for progressive hemorrhagic injury in patients with moderate traumatic brain injury

Ruhai Wang(), Xiangji Cao, Shen Wang, Min Zhang, Chao Han, Qiang Yu, Haicheng Hu, Xizhen Li   

  1. Department of Neurosurgery, the Second Affiliated Hospital of Fuyang Normal University, Fuyang 236000, China
    Department of Neurosurgery, Ningbo Hangzhou Bay Hospital, Ningbo 315336, China
    Department of Clinical Laboratory, Fuyang Hospital of Anhui Medical University, Fuyang 236112, China
  • Received:2023-02-14 Published:2023-12-15
  • Corresponding author: Ruhai Wang
  • Supported by:
    Foundation of Fuyang Health Commission(FY2021-081, FY2023-019)
引用本文:

王如海, 曹祥记, 王绅, 张敏, 韩超, 于强, 胡海成, 李习珍. 凝血指标对中型创伤性脑损伤患者进展性出血性损伤的预测能力[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 343-349.

Ruhai Wang, Xiangji Cao, Shen Wang, Min Zhang, Chao Han, Qiang Yu, Haicheng Hu, Xizhen Li. Predictive ability of coagulation tests for progressive hemorrhagic injury in patients with moderate traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2023, 09(06): 343-349.

目的

探讨凝血指标对中型创伤性脑损伤(mTBI)患者进展性出血性损伤(PHI)的预测价值。

方法

回顾性分析2018年1月至2023年6月阜阳师范大学附属第二医院神经外科收治的270例mTBI患者的临床资料。根据mTBI患者伤后72 h内是否发生PHI将患者分为PHI组和非PHI组。根据是否纳入凝血指标分别构建3个PHI预测模型:模型1包括mTBI患者一般资料及影像学资料等标准变量;模型2基于模型1标准变量基础上添加凝血指标;模型3仅包括凝血指标。通过单因素及多因素Logistic回归分析,评估mTBI患者发生PHI的独立影响因素。使用受试者特征工作(ROC)曲线及曲线下面积(AUC)评价不同预测模型对PHI的预测能力。使用bootstrap法对预测模型进行内部验证。

结果

270例mTBI患者中,43例发生PHI,PHI发生率为15.9%。PHI组与非PHI组首次CT扫描时间、入院GCS评分、颅骨骨折、创伤性脑内血肿、创伤性硬膜外血肿、纤维蛋白原(FIB)、D-二聚体比较,差异有统计学意义(P<0.05)。多因素Logistic回归分析显示,首次CT扫描时间、入院GCS评分、创伤性脑内血肿、FIB、D-二聚体是PHI发生的独立影响因素。3种预测模型对比显示,模型2(AUC=0.908,95%CI:0.868~0.940)较模型1(AUC=0.848,95%CI:0.800~0.889)和模型3(AUC=0.805,95%CI:0.752~0.850)具有更好的预测能力。

结论

凝血指标作为mTBI患者发生PHI的独立影响因素,对PHI具有较好的预测能力。

Objective

To explore the predictive ability of coagulation tests for progressive hemorrhagic injury (PHI) in patients with moderate traumatic brain injury (mTBI).

Methods

Clinical data of 270 patients with mTBI admitted to Neurosurgery Department of the Second Affiliated Hospital of Fuyang Normal University from January 2018 to June 2023 were retrospectively analyzed. The mTBI patients were divided into PHI group and non-PHI group deponding on whether PHI occurred within 72 h after injury. Three prediction models for PHI were constructed according to whether coagulation tests was included. Model 1 included standard variables such as general data and imaging data of mTBI patients; Model 2 added coagulation tests based on standard variable of model one; Model 3 included only coagulation indicators. Independent influencing factors for PHI in mTBI patients were revealed by univariate and multivariate Logistic regression analysis. Receiver operating characteristic (ROC) curve and area under curve (AUC) were used to evaluate the ability of different predictive models for PHI. Internal validation of the prediction models was used by bootstrap analysis.

Results

Among 270 mTBI patients, 43 cases developed PHI, and the incidence of PHI was 15.9%. There was statistically significant difference in the first CT scan time, GCS score on admission, skull fracture, traumatic intracerebral hematoma, traumatic epidural hematoma, fibrinogen (FIB) and D-dimer between the two groups (P<0.05). Multivariate Logistic regression analysis showed that the first CT scan time, GCS score on admission, traumatic intracerebral hematoma, FIB, D-dimer were independent risk factors for PHI. Comparison of 3 prediction models showed that Model 2 (AUC=0.908, 95%CI: 0.868-0.940) has better predictive ability than Model 1 (AUC=0.848, 95%CI: 0.800-0.889) and Model 3 (AUC=0.805, 95%CI: 0.752-0.850).

Conclusion

As an independent influencing factor for PHI in patients with mTBI, coagulation tests has a good ability to predict the occurrence of PHI.

表1 mTBI患者临床特征及相关因素的比较
Tab.1 Comparison of clinical features and related factors in mTBI patients
项目 PHI组(n=43) 非PHI组(n=227) χ2/t/Z P
性别[例(%)]     0.001 0.977
27(62.8) 142(62.6)    
16(37.2) 85(37.4)    
年龄(岁,±s 59.7±13.7 59.0±14.8 0.281 0.779
致伤原因[例(%)]     0.146 0.930
交通伤 18(41.9) 97(42.7)    
摔跌 10(23.2) 47(20.7)    
其他 15(34.9) 83(36.6)    
基础疾病[例(%)]        
高血压 12(27.9) 62(27.3) 0.006 0.936
糖尿病 5(11.6) 29(12.8) 0.043 0.835
院前呕吐[例(%)] 33(76.7) 151(66.5) 1.741 0.187
首次CT扫描时间[h,M(Q1,Q3)] 1.0(0.8,2.0) 2.1(1.4,2.8) -6.616 <0.001
入院GCS评分(分,±s 11.1±1.2 11.7±0.7 -3.202 0.002
创伤性脑损伤类型[例(%)]      
颅骨骨折 32(74.4) 125(55.31) 5.564 0.018
颅底骨折 11(25.6) 68(30.0) 0.334 0.563
脑挫伤 40(93.0) 208(91.6) 0.094 0.759
创伤性硬膜外血肿 15(34.9) 37(16.3) 8.029 0.005
创伤性硬膜下血肿 37(86.0) 165(72.7) 3.424 0.064
创伤性脑内血肿 15(34.9) 28(12.3) 13.728 <0.001
创伤性蛛网膜下腔出血 38(88.4) 205(90.3) 0.151 0.698
实验室检查指标[M(Q1,Q3)]      
血小板计数(×109/L) 187.0(143.0,242.0) 183.0(152.0,223.0) -0.075 0.941
血清总钙浓度(mmol/L) 2.2(2.1,2.3) 2.2(2.1,2.3) -0.649 0.516
TT(s) 16.8(15.4,18.8) 16.9(15.3,18.3) -0.453 0.651
PT(s) 12.0(11.0,13.3) 11.7(11.0,12.4) -1.801 0.072
INR 1.0(1.0,1.1) 1.0(0.9,1.1) -1.802 0.072
APTT(s) 25.2(22.9,31.2) 25.0(23.0,27.5) -1.237 0.216
FIB(g/L) 2.1(1.6,2.6) 2.8(2.3,3.3) -4.967 <0.001
D-二聚体(mg/L) 17.4(7.8,45.2) 4.8(2.1,11.8) -5.394 <0.001
表2 mTBI患者PHI的多因素Logistic回归分析
Tab.2 Multivariate Logistic regression analysis of PHI in mTBI patients
图1 影响因素对mTBI患者发生PHI预测能力的ROC曲线分析
Fig.1 ROC curve analysis of the predictive value of influencing factors on the occurrence of PHI in mTBI patients
表3 影响因素预测PHI的ROC曲线结果
Tab.3 ROC curve results for predicting PHI based on influencing factors
图2 3个预测模型对PHI预测能力的ROC曲线分析
Fig.2 ROC curve analysis of three prediction models for the prediction ability of PHI
图3 3种预测模型对PHI的预测验证结果A:模型1;B:模型2;C:模型3
Fig.3 Verification results of three prediction models for PHI prediction
表4 3个预测模型的ROC曲线结果
Tab.4 ROC curve results of three prediction models
[1]
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295. DOI: 10.1016/s1474-4422(18)30469-1.
[2]
Guo S, Han R, Chen F, et al. Epidemiological characteristics for patients with traumatic brain injury and the nomogram model for poor prognosis: an 18-year hospital-based study[J]. Front Neurol, 2023, 14: 1138217. DOI: 10.3389/fneur.2023.1138217.
[3]
McCrea MA, Giacino JT, Barber J, et al. Functional outcomes over the first year after moderate to severe traumatic brain injury in the prospective, longitudinal TRACK-TBI study[J]. JAMA Neurol, 2021, 78(8): 982-992. DOI: 10.1001/jamaneurol.2021.2043.
[4]
Godoy DA, Rubiano A, Rabinstein AA, et al. Moderate traumatic brain injury: the grey zone of neurotrauma[J]. Neurocrit Care, 2016, 25(2): 306-319. DOI: 10.1007/s12028-016-0253-y.
[5]
Wu X, Sun Y, Xu X, et al. Mortality prediction in severe traumatic brain injury using traditional and machine learning algorithms[J]. J Neurotrauma, 2023, 40(13-14): 1366-1375. DOI: 10.1089/neu.2022.0221.
[6]
Lang L, Wang T, Xie L, et al. An independently validated nomogram for individualised estimation of short-term mortality risk among patients with severe traumatic brain injury: a modelling analysis of the CENTER-TBI China registry study[J]. EClinicalMedicine, 2023, 59: 101975. DOI: 10.1016/j.eclinm.2023.101975.
[7]
Zarei H, Vazirizadeh-Mahabadi M, Adel Ramawad H, et al. Prognostic value of CRASH and IMPACT models for predicting mortality and unfavorable outcome in traumatic brain injury; a systematic review and meta-analysis[J]. Arch Acad Emerg Med, 2023, 11(1): e27. DOI: 10.22037/aaem.v11i1.1885.
[8]
Wang R, Yang DX, Ding J, et al. Classification, risk factors, and outcomes of patients with progressive hemorrhagic injury after traumatic brain injury[J]. BMC Neurol, 2023, 23(1): 68. DOI: 10.1186/s12883-023-03112-x.
[9]
Wei X, Tang X, You D, et al. A clinical-radiomics based nomogram to predict progressive intraparenchymal hemorrhage in mild to moderate traumatic injury patients[J]. Eur J Radiol, 2023, 163: 110785. DOI: 10.1016/j.ejrad.2023.110785.
[10]
Juratli TA, Zang B, Litz RJ, et al. Early hemorrhagic progression of traumatic brain contusions: frequency, correlation with coagulation disorders, and patient outcome: a prospective study[J]. J Neurotrauma, 2014, 31(17): 1521-1527. DOI: 10.1089/neu.2013.3241.
[11]
Zhu Y, Xu L, Lin S, et al. Establishment and validation of a prediction model for intraparenchymal hematoma expansion in patients with cerebral contusion: a reliable Nomogram[J]. Clin Neurol Neurosurg, 2022, 212: 107079. DOI: 10.1016/j.clineuro.2021.107079.
[12]
Tong WS, Zheng P, Zeng JS, et al. Prognosis analysis and risk factors related to progressive intracranial haemorrhage in patients with acute traumatic brain injury[J]. Brain Inj, 2012, 26(9): 1136-1142. DOI: 10.3109/02699052.2012.666437.
[13]
Fair KA, Farrell DH, McCully BH, et al. Fibrinolytic activation in patients with progressive intracranialhemorrhage after traumatic brain injury[J]. J Neurotrauma, 2021, 38(8): 960-966. DOI: 10.1089/neu.2018.6234.
[14]
Peng Q, Zhao J, Wang P, et al. Expressions of plasma cystatin C, D-dimer and hypersensitive C-reactive protein in patients with intracranial progressive hemorrhagic injury after craniocerebral injury, and their clinical significance[J]. Arq Neuropsiquiatr, 2019, 77(6): 381-386. DOI: 10.1590/0004-282x20190057.
[15]
Gao G, Wu X, Feng J, et al. Clinical characteristics and outcomes in patients with traumatic brain injury in China: a prospective, multicentre, longitudinal, observational study[J]. Lancet Neurol, 2020, 19(8): 670-677. DOI: 10.1016/s1474-4422(20)30182-4.
[16]
Yue JK, Satris GG, Dalle Ore CL, et al. Polytrauma is associated with increased three- and six-month disability after traumatic brain injury: a TRACK-TBI pilot study[J]. Neurotrauma Rep, 2020, 1(1): 32-41. DOI: 10.1089/neur.2020.0004.
[17]
Chen T, Chen S, Wu Y, et al. A predictive model for postoperative progressive haemorrhagic injury in traumatic brain injuries[J]. BMC Neurol, 2022, 22(1): 16. DOI: 10.1186/s12883-021-02541-w.
[18]
Wan X, Fan T, Wang S, et al. Progressive hemorrhagic injury in patients with traumatic intracerebral hemorrhage: characteristics, risk factors and impact on management[J]. Acta Neurochir (Wien), 2017, 159(2): 227-235. DOI: 10.1007/s00701-016-3043-6.
[19]
崔阳,王张立.创伤性颅脑损伤后迟发性颅内血肿的危险因素分析[J].中华神经创伤外科电子杂志, 2021, 7(2): 87-91. DOI: 10.3877/cma.j.issn.2095-9141.2021.02.005.
[20]
Wan X, Fan T, Wang S, et al. Progressive hemorrhagic injury in patients with traumatic intracerebral hemorrhage: characteristics, risk factors and impact on management[J]. Acta Neurochir (Wien), 2017, 159(2): 227-235. DOI: 10.1007/s00701-016-3043-6.
[21]
Chojak R, Koźba-Gosztyła M, Pawłowski M, et al. Deterioration after mild traumatic brain injury: a single-center experience with cost analysis[J]. Front Neurol, 2021, 12: 588429. DOI: 10.3389/fneur.2021.588429.
[22]
Fletcher-Sandersjöö A, Tatter C, Tjerkaski J, et al. Time course and clinical significance of hematoma expansion in moderate-to-severe traumatic brain injury: an observational cohort study[J]. Neurocrit Care, 2023, 38(1): 60-70. DOI: 10.1007/s12028-022-01609-w.
[23]
Nagesh M, Patel KR, Mishra A, et al. Role of repeat CT in mild to moderate head injury: an institutional study[J]. Neurosurg Focus, 2019, 47(5): E2. DOI: 10.3171/2019.8.Focus19527.
[24]
Deng L, Zhang G, Wei X, et al. Comparison of satellite sign and island sign in predicting hematoma growth and poor outcome in patients with primary intracerebral hemorrhage[J]. World Neurosurg, 2019, 127: e818-e825. DOI: 10.1016/j.wneu.2019.03.273.
[25]
Huang YW, Yang MF. Combining investigation of imaging markers (island sign and blend sign) and clinical factors in predicting hematoma expansion of intracerebral hemorrhage in the basal ganglia[J]. World Neurosurg, 2018, 120: e1000-e1010. DOI: 10.1016/j.wneu.2018.08.214.
[26]
于志虎,周月洁,孙异春,等.脑挫裂伤并血肿形成患者发生进展的危险因素分析[J].中华神经医学杂志, 2020, 19(9): 929-936. DOI: 10.3760/cma.j.cn115354-20200513-00364.
[27]
Hagemo JS, Stanworth S, Juffermans NP, et al. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study[J]. Crit Care, 2014, 18(2): R52. DOI: 10.1186/cc13798.
[28]
Lyu K, Yuan Q, Fu P, et al. Impact of fibrinogen level on the prognosis of patients with traumatic brain injury: a single-center analysis of 2570 patients[J]. World J Emerg Surg, 2020, 15(1): 54. DOI: 10.1186/s13017-020-00332-1.
[29]
Sabouri M, Vahidian M, Sourani A, et al. Efficacy and safety of fibrinogen administration in acute post-traumatic hypofibrinogenemia in isolated severe traumatic brain injury: a randomized clinical trial[J]. J Clin Neurosci, 2022, 101: 204-211. DOI: 10.1016/j.jocn.2022.05.016.
[30]
Carvalho M, Rodrigues A, Gomes M, et al. Interventional algorithms for the control of coagulopathic bleeding in surgical, trauma, and postpartum settings: recommendations from the share network group[J]. Clin Appl Thromb Hemost, 2016, 22(2): 121-137. DOI: 10.1177/1076029614559773.
[31]
Hayakawa M. Dynamics of fibrinogen in acute phases of trauma[J]. J Intensive Care, 2017, 5(1): 3. DOI: 10.1186/s40560-016-0199-3.
[32]
Maegele M, Schochl H, Menovsky T, et al. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management[J]. Lancet Neurol, 2017, 16(8): 630-647. DOI: 10.1016/s1474-4422(17)30197-7.
[33]
Schwarzmaier SM, Gallozzi M, Plesnila N. Identification of the vascular source of vasogenic brain edema following traumatic brain injury using in vivo 2-photon microscopy in mice[J]. J Neurotrauma, 2015, 32(13): 990-1000. DOI: 10.1089/neu.2014.3775.
[1] 何佳伟, 张良, 杨骐, 王占祥. 创伤性颅脑损伤后进展性出血性损伤的诊疗现状[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 175-179.
[2] 李洪, 蒋红英, 庄乐, 周丹, 陆岑琳. PCT与凝血指标在重症ARDS患者预后判断中的应用价值[J]. 中华卫生应急电子杂志, 2020, 06(05): 266-270.
阅读次数
全文


摘要