切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2024, Vol. 10 ›› Issue (03) : 132 -140. doi: 10.3877/cma.j.issn.2095-9141.2024.03.002

基础研究

雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究
张晟豪1, 周杰1,(), 姚鹏飞1, 李长栋1, 屈晓东1, 南亚强1, 曹丽1   
  1. 1. 730050 兰州,解放军联勤保障部队第九四〇医院神经外科
  • 收稿日期:2024-01-03 出版日期:2024-06-15
  • 通信作者: 周杰

Role and mechanism of celastrol in secondary injury after traumatic brain injury

Shenghao Zhang1, Jie Zhou1,(), Pengfei Yao1, Changdong Li1, Xiaodong Qu1, Yaqiang Nan1, Li Cao1   

  1. 1. Department of Neurosurgery, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
  • Received:2024-01-03 Published:2024-06-15
  • Corresponding author: Jie Zhou
  • Supported by:
    Natural Science Foundation of Gansu Province(1506RJZA301); Health Industry Scientific Research Program of Gansu Province(GSWSKY2018-43)
引用本文:

张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.

Shenghao Zhang, Jie Zhou, Pengfei Yao, Changdong Li, Xiaodong Qu, Yaqiang Nan, Li Cao. Role and mechanism of celastrol in secondary injury after traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(03): 132-140.

目的

探究雷公藤红素(Cela)对创伤性脑损伤(TBI)后继发性脑伤的作用及机制。

方法

120只健康雄性C57BL/6J小鼠按照随机数字表法分为假手术组(Sham组,36只)、颅脑创伤组(TBI组,42只)、干预组(TBI+Cela组,42只)。Sham组仅行开骨窗处理;TBI组与TBI+Cela组开骨窗后采用微处理器控制的气动冲击装置建立小鼠TBI模型,分别于术前24 h和TBI造模后0.5 h,TBI+Cela组的小鼠予以腹腔注射Cela(1 mg/kg体质量),TBI组的小鼠予以腹腔注射等量的生理盐水。TBI造模后24 h,采用尼氏染色法测定TBI后脑损伤体积;干湿重法测定脑含水量;改良神经功能缺损评分(mNSS)、转角实验及挂线实验测定TBI后脑功能的损伤程度;DHE染色法测定TBI后脑组织活性氧自由基(ROS)水平;酶联免疫吸附法测定TBI后丙二醛(MDA)、三磷酸腺苷含量以及线粒体呼吸链复合物Ⅰ~Ⅳ活性;透射电镜观察并计算TBI后线粒体超微形态改变情况;Western blotting测定TBI后SIRT3蛋白的表达水平改变情况。

结果

TBI后24 h,TBI+Cela组的脑损伤体积、脑含水量较TBI组明显减少,差异有统计学意义(P<0.05)。TBI后小鼠神经功能明显受损,TBI+Cela组的mNSS评分较TBI组显著降低,坠落潜伏期较TBI组显著升高,向左转向的比例较TBI组明显减少,差异有统计学意义(P<0.05)。TBI后小鼠脑组织ROS、MDA水平显著升高,TBI+Cela组的ROS、MDA水平较TBI组均明显降低,差异有统计学意义(P<0.05)。TBI后线粒体形态与功能显著受损,TBI+Cela组的线粒体形态与功能损伤程度较TBI组明显好转,差异有统计学意义(P<0.05)。TBI后SIRT3的表达显著降低,TBI+Cela组中SIRT3的表达水平较TBI组明显升高,差异有统计学意义(P<0.05)。

结论

Cela可显著减轻TBI造成的脑实质与功能损伤、氧化应激强度以及线粒体形态与功能损伤,其机制可能是通过对SIRT3的正向调控来发挥线粒体保护作用,进而减轻TBI后的氧化应激强度,最终发挥减轻TBI后继发性损伤的作用。

Objective

To investigate the effect and mechanism of celastrol (Cela) on secondary injury after traumatic brain injury (TBI).

Methods

A total of 120 healthy male C57BL/6J mice were randomly divided into Sham group (n=36), TBI group (n=42), and TBI+Cela group (n=42). The Sham group was only treated with open bone window. In TBI group and TBI+Cela group, a microprocessor controlled pneumatic impact device was used to establish the TBI model after opening the bone window. Mice in the TBI+Cela group were intraperitoneally injected with Cela (1 mg/kg body weight), while mice in the TBI group were intraperitoneally injected with the same amount of physiological saline solution. Twenty-four hours after modeling, Nissl staining was used to determine the brain injury volume after TBI. Brain water content was measured by dry-wet weight method. The degree of brain function injury after TBI was determined by modified neurological severity score (mNSS), turn Angle test and seton test. DHE staining was used to measure the level of reactive oxygen species (ROS) in brain tissue after TBI. The contents of malondialdehyde (MDA), adenosine triphosphate and the activity of mitochondrial respiratory chain complex Ⅰ-Ⅳ were measured by enzyme-linked immunosorbent assay. Transmission electron microscopy was used to observe and calculate the ultrastructural changes of mitochondria after TBI. Western blotting was used to determine the expression of SIRT3 protein after TBI.

Results

Twenty-four hours after TBI, the brain injury volume and brain water content in the TBI+Cela group were significantly reduced than those of the TBI group, and the differences were statistically significant (P<0.05). The neurological function of mice was significantly impaired after TBI, the mNSS score of the TBI+Cela group was significantly lower than that of the TBI group, the latency to fall was significantly higher than that of the TBI group, and the proportion of left turning was significantly reduced than that of the TBI group, and the differences were statistically significant (P<0.05). The levels of ROS and MDA in mouse brain tissue were significantly increased after TBI, while the ROS and MDA levels in the TBI+Cela group were significantly lower than those in the TBI group, with statistical significance (P<0.05). The mitochondrial morphology and function were significantly impaired after TBI, and the degree of mitochondrial morphology and function damage of the TBI+Cela group were significantly improved than those of the TBI group, with statistical significance (P<0.05). The expression of SIRT3 was significantly reduced after TBI, while the expression level of SIRT3 was significantly increased in the TBI+Cela group, with statistical significance (P<0.05).

Conclusion

Cela can significantly reduce TBI induced brain parenchymal and functional damage, oxidative stress intensity, and mitochondrial morphological and functional damage, possibly by positively regulating SIRT3 to protect mitochondria, thereby reducing oxidative stress intensity after TBI, and ultimately alleviating secondary brain injury after TBI.

图1 3组小鼠TBI后24 h的脑损伤体积与脑含水量变化A:尼氏染色结果;B:2组小鼠脑损伤体积比较,P<0.05;C:3组小鼠脑含水量比较;与Sham组比较,aP<0.05;与TBI组比较,bP<0.05;TBI:创伤性脑损伤;Cela:雷公藤红素
Fig.1 Changes in brain injury volume and brain water content 24 h after TBI in three groups of mice
图2 3组小鼠TBI后24 h的神经功能评估情况A:mNSS评分;B:挂线实验;C:转角测试;与Sham组比较,aP<0.05;与TBI组比较,bP<0.05;TBI:创伤性脑损伤;Cela:雷公藤红素;mNSS:改良神经功能缺损评分
Fig.2 The neurological function of mice in three groups after 24 h of TBI
图3 3组小鼠TBI后24 h的氧化应激强度变化A:DHE染色结果(×20);B:3组小鼠DHE荧光强度比较;C:3组小鼠MDA水平比较;与Sham组比较,aP<0.05;与TBI组比较,bP<0.05;TBI:创伤性脑损伤;Cela:雷公藤红素;MDA:丙二醛;DHE:二氢乙锭
Fig.3 Changes of oxidative stress intensity of mice in three groups after 24 h of TBI
图4 3组小鼠TBI后24 h的线粒体形态与功能的损伤变化A:透射电镜下3组小鼠神经元中线粒体超微结构变化(×12 000);B:3组小鼠神经元中Ⅰ类线粒体占比的比较;C:3组小鼠ATP水平比较;D~G:3组线粒体呼吸链复合物活性的比较(D:线粒体复合物Ⅰ;E:线粒体复合物Ⅱ;F:线粒体复合物Ⅲ;G:线粒体复合物Ⅳ);与Sham组比较,aP<0.05;与TBI组比较,bP<0.05;TBI:创伤性脑损伤;Cela:雷公藤红素
Fig.4 Changes of mitochondrial morphology and function of mice in three groups after 24 h of TBI
图5 3组小鼠脑组织中SIRT3蛋白的表达水平变化A:Western blotting电泳图;B:3组小鼠的SIRT3蛋白表达水平比较;与Sham组比较,aP<0.05;与TBI组比较,bP<0.05;TBI:创伤性脑损伤;Cela:雷公藤红素
Fig.5 Changes in SIRT3 protein expression levels in brain tissue of mice in three groups
[1]
Mustafa AG, Singh IN, Wang J, et al. Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals[J]. J Neurochem, 2010, 114(1): 271-280. DOI: 10.1111/j.1471-4159.2010.06749.x.
[2]
Wang H, Zhou XM, Wu LY, et al. Aucubin alleviates oxidative stress and inflammation via Nrf2-mediated signaling activity in experimental traumatic brain injury[J]. J Neuroinflammation, 2020, 17(1): 188. DOI: 10.1186/s12974-020-01863-9.
[3]
Martinez-Tapia RJ, Estrada-Rojo F, Lopez-Aceves TG, et al. Diurnal variation induces neurobehavioral and neuropathological differences in a rat model of traumatic brain injury[J]. Front Neurosci, 2020, 14: 564992. DOI: 10.3389/fnins.2020.564992.
[4]
Gong QY, Cai L, Jing Y, et al. Urolithin A alleviates blood-brain barrier disruption and attenuates neuronal apoptosis following traumatic brain injury in mice[J]. Neural Regen Res, 2022, 17(9): 2007-2013. DOI: 10.4103/1673-5374.335163.
[5]
Betancur MI, Mason HD, Alvarado-Velez M, et al. Chondroitin sulfate glycosaminoglycan matrices promote neural stem cell maintenance and neuroprotection post-traumatic brain injury[J]. ACS Biomater Sci Eng, 2017, 3(3): 420-430. DOI: 10.1021/acsbiomaterials.6b00805.
[6]
Jiang M, Liu X, Zhang D, et al. Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization [J]. J Neuroinflammation, 2018, 15(1): 78. DOI: 10.1186/s12974-018-1124-6.
[7]
Pan X, Zhao Y, Cheng T, et al. Monitoring NAD(P)H by an ultrasensitive fluorescent probe to reveal reductive stress induced by natural antioxidants in HepG2 cells under hypoxia[J]. Chem Sci, 2019, 10(35): 8179-8186. DOI: 10.1039/c9sc02020a.
[8]
Zhang R, Zhang N, Zhang H, et al. Celastrol prevents cadmium-induced neuronal cell death by blocking reactive oxygen species-mediated mammalian target of rapamycin pathway[J]. Br J Pharmacol, 2017, 174(1): 82-100. DOI: 10.1111/bph.13655.
[9]
Zhang Y, Geng C, Liu X, et al. Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1[J]. Mol Metab, 2017, 6(1): 138-147. DOI: 10.1016/j.molmet.2016.11.002.
[10]
Lin MW, Lin CC, Chen YH, et al. Celastrol inhibits dopaminergic neuronal death of parkinson's disease through activating mitophagy[J]. Antioxidants (Basel), 2019, 9(1): 37. DOI: 10.3390/antiox9010037.
[11]
Chow AM, Tang DW, Hanif A, et al. Localization of heat shock proteins in cerebral cortical cultures following induction by celastrol[J]. Cell Stress Chaperones, 2014, 19(6): 845-851. DOI: 10.1007/s12192-014-0508-5.
[12]
Xu H, Cai Y, Yu M, et al. Celastrol protects against early brain injury after subarachnoid hemorrhage in rats through alleviating blood-brain barrier disruption and blocking necroptosis[J]. Aging (Albany NY), 2021, 13(12): 16816-16833. DOI: 10.18632/aging.203221.
[13]
Chen M, Liu M, Luo Y, et al. Celastrol protects against cerebral ischemia/reperfusion injury in mice by inhibiting glycolysis through targeting hif-1α/pdk1 axis[J]. Oxid Med Cell Longev, 2022, 2022: 7420507. DOI: 10.1155/2022/7420507.
[14]
Cui W, Wu X, Shi Y, et al. 20-HETE synthesis inhibition attenuates traumatic brain injury-induced mitochondrial dysfunction and neuronal apoptosis via the SIRT1/PGC-1α pathway: a translational study[J]. Cell Prolif, 2021, 54(2): e12964. DOI: 10.1111/cpr.12964.
[15]
Saeed K, Jo MH, Park JS, et al. 17β-estradiol abrogates oxidative stress and neuroinflammation after cortical stab wound injury[J]. Antioxidants (Basel), 2021, 10(11): 1682. DOI: 10.3390/antiox10111682.
[16]
Yu P, Li S, Zhang Z, et al. Progesterone-mediated angiogenic activity of endothelial progenitor cell and angiogenesis in traumatic brain injury rats were antagonized by progesterone receptor antagonist[J]. Cell Prolif, 2017, 50(5): e12362. DOI: 10.1111/cpr.12362.
[17]
Li X, Guo H, Zhao L, et al. Adiponectin attenuates NADPH oxidase-mediated oxidative stress and neuronal damage induced by cerebral ischemia-reperfusion injury[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(12): 3265-3276. DOI: 10.1016/j.bbadis.2017.08.010.
[18]
Seo JH, Kang SW, Kim K, et al. Environmental enrichment attenuates oxidative stress and alters detoxifying enzymes in an A53T α-synuclein transgenic mouse model of Parkinson's disease[J]. Antioxidants (Basel), 2020, 9(10): 928. DOI: 10.3390/antiox9100928.
[19]
Canugovi C, Stevenson MD, Vendrov AE, et al. Increased mitochondrial NADPH oxidase 4 (NOX4) expression in aging is a causative factor in aortic stiffening[J]. Redox Biol, 2019, 26: 101288. DOI: 10.1016/j.redox.2019.101288.
[20]
Lai Y, Lin P, Chen M, et al. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function[J]. Redox Biol, 2020, 34: 101503. DOI: 10.1016/j.redox.2020.101503.
[21]
Wang Y, Zhang C, Peng W, et al. Hydroxysafflor yellow A exerts antioxidant effects in a rat model of traumatic brain injury[J]. Mol Med Rep, 2016, 14(4): 3690-3696. DOI: 10.3892/mmr.2016.5720.
[22]
Li X Sr, Liu W, Jiang G, et al. Celastrol ameliorates neuronal mitochondrial dysfunction induced by intracerebral hemorrhage via targeting cAMP-activated exchange protein-1[J]. Adv Sci (Weinh), 2024, 11(19): e2307556. DOI: 10.1002/advs.202307556.
[23]
Mojtahedzadeh M, Ahmadi A, Mahmoodpoor A, et al. Hypertonic saline solution reduces the oxidative stress responses in traumatic brain injury patients[J]. J Res Med Sci, 2014, 19(9): 867-874.
[24]
Szarka N, Toth L, Czigler A, et al. Single mild traumatic brain injury induces persistent disruption of the blood-brain barrier, neuroinflammation and cognitive decline in hypertensive rats[J]. Int J Mol Sci, 2019, 20(13): 3223. DOI: 10.3390/ijms20133223.
[25]
Li A, Gao M, Liu B, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease[J]. Cell Death Dis, 2022, 13(5): 444. DOI: 10.1038/s41419-022-04906-6.
[26]
Mocan L, Ilie I, Tabaran FA, et al. Surface plasmon resonance-induced photoactivation of gold nanoparticles as mitochondria-targeted therapeutic agents for pancreatic cancer[J]. Expert Opin Ther Targets, 2013, 17(12): 1383-1393. DOI: 10.1517/14728222.2013.855200.
[27]
Zhao Y, Yan T, Xiong C, et al. Overexpression of lipoic acid synthase gene alleviates diabetic nephropathy of Leprdb/db mice[J]. BMJ Open Diabetes Res Care, 2021, 9(1): e002260. DOI: 10.1136/bmjdrc-2021-002260.
[28]
Chang P, Zhang X, Zhang J, et al. BNP protects against diabetic cardiomyopathy by promoting Opa1-mediated mitochondrial fusion via activating the PKG-STAT3 pathway[J]. Redox Biol, 2023, 62: 102702. DOI: 10.1016/j.redox.2023.102702.
[29]
Lu W, Zhao M, Rajbhandary S, et al. Free iron catalyzes oxidative damage to hematopoietic cells/mesenchymal stem cells in vitro and suppresses hematopoiesis in iron overload patients[J]. Eur J Haematol, 2013, 91(3): 249-261. DOI: 10.1111/ejh.12159.
[30]
Li J, Li M, Ge Y, et al. β-amyloid protein induces mitophagy-dependent ferroptosis through the CD36/PINK/PARKIN pathway leading to blood-brain barrier destruction in Alzheimer's disease[J]. Cell Biosci, 2022, 12(1): 69. DOI: 10.1186/s13578-022-00807-5.
[31]
Bubb KJ, Drummond GR, Figtree GA. New opportunities for targeting redox dysregulation in cardiovascular disease[J]. Cardiovasc Res, 2020, 116(3): 532-544. DOI: 10.1093/cvr/cvz183.
[32]
Liu L, Cao Q, Gao W, et al. Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway[J]. Aging (Albany NY), 2021, 13(12): 16105-16123. DOI: 10.18632/aging.203137.
[33]
Alrob OA, Sankaralingam S, Ma C, et al. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling[J]. Cardiovasc Res, 2014, 103(4): 485-497. DOI: 10.1093/cvr/cvu156.
[34]
Wan X, Wang C, Huang Z, et al. Cisplatin inhibits SIRT3-deacetylation MTHFD2 to disturb cellular redox balance in colorectal cancer cell[J]. Cell Death Dis, 2020, 11(8): 649. DOI: 10.1038/s41419-020-02825-y.
[35]
Ma J, Liu B, Yu D, et al. SIRT3 deacetylase activity confers chemoresistance in AML via regulation of mitochondrial oxidative phosphorylation[J]. Br J Haematol, 2019, 187(1): 49-64. DOI: 10.1111/bjh.16044.
[36]
Tyagi A, Nguyen CU, Chong T, et al. SIRT3 deficiency-induced mitochondrial dysfunction and inflammasome formation in the brain[J]. Sci Rep, 2018, 8(1): 17547. DOI: 10.1038/s41598-018-35890-7.
[37]
Bindu S, Pillai VB, Kanwal A, et al. Sirt3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(1): L68-l78. DOI: 10.1152/ajplung.00188.2016.
[1] 王泽华, 郭子瑊, 陈帅, 狄靖凯, 闫泽辉, 冯腾达, 毛兴佳, 向川. 线粒体质量控制在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2024, 18(02): 215-224.
[2] 杨文飞, 郝嘉文, 鲁梦远, 赵学刚, 李聪颖, 盖晨阳, 张晶, 张庆富. 高压电烧伤对大鼠心肌氧化应激的影响及N-乙酰半胱氨酸的干预作用[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 106-112.
[3] 鲁梦远, 赵学刚, 郝嘉文, 盖晨阳, 李聪颖, 张晶, 张庆富. 高压电烧伤大鼠肝脏氧化应激损伤及灯盏花素的干预作用[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 113-118.
[4] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[5] 殷国青, 曾莉, 贺斌峰, 孙芬芬. Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 349-355.
[6] 吴沛玲, 娄月妍, 张洪艳, 陈东方, 刘雪青, 赵丽芳, 薛姗, 蒋捍东. 线粒体相关基因在特发性肺纤维化中的分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 178-184.
[7] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[8] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[9] 裴捷, 毛本亮, 郝定盈, 苑伟, 颜勇, 吴帆, 王鹏珍, 王百林. 槲皮素调控肝缺血-再灌注损伤的研究进展及应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 244-249.
[10] 苗楠, 宗子钰. 脑出血后继发性脑损伤与线粒体相关机制的研究进展[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 107-111.
[11] 张薇, 郭姗姗. 轻型创伤性脑损伤远期后遗症流行病学的研究进展[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 117-121.
[12] 王如海, 韩超, 于强, 胡海成, 孙菲琳, 杨震. 重型创伤性脑损伤患者术后慢性意识障碍的危险因素及其预测价值[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 78-83.
[13] 王燕, 梁海乾, 郭姗姗. 炎症小体在创伤性脑损伤中作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 177-181.
[14] 胡贤瑞, 伍振国, 何竟. 高压氧治疗创伤性脑损伤患者认知功能障碍疗效的Meta分析[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 21-36.
[15] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
阅读次数
全文


摘要