切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2019, Vol. 05 ›› Issue (05) : 299 -303. doi: 10.3877/cma.j.issn.2095-9141.2019.05.010

所属专题: 文献

基础研究

小胶质细胞极化在热损伤介导的早期神经损伤中的相关研究
王蕾1, 叶子2, 张毅2, 朱保锋1, 沈一鸣1, 储鑫1, 戴勇2, 沈君华1,()   
  1. 1. 226001 南通,南通大学第二附属医院急诊中心
    2. 226001 南通,南通大学第二附属医院神经外科
  • 收稿日期:2019-07-02 出版日期:2019-10-15
  • 通信作者: 沈君华
  • 基金资助:
    江苏省科技厅自然科学基金(BK20161290); 南通市科技计划项目(JCZ18004,JC2018088); 江苏省"六大人才高峰"高层次人才项目(2019-WSW-199)

Study on microglia polarization in early neural injury mediated by thermal injury

Lei Wang1, Zi Ye2, Yi Zhang2, Baofeng Zhu1, Yiming Shen1, Xin Chu1, Yong Dai2, Junhua Shen1,()   

  1. 1. Department of Emergency Center, Second Affiliated Hospital of Nantong University, Nantong 226001, China
    2. Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong 226001, China
  • Received:2019-07-02 Published:2019-10-15
  • Corresponding author: Junhua Shen
  • About author:
    Corresponding author: Shen Junhua, Email:
引用本文:

王蕾, 叶子, 张毅, 朱保锋, 沈一鸣, 储鑫, 戴勇, 沈君华. 小胶质细胞极化在热损伤介导的早期神经损伤中的相关研究[J]. 中华神经创伤外科电子杂志, 2019, 05(05): 299-303.

Lei Wang, Zi Ye, Yi Zhang, Baofeng Zhu, Yiming Shen, Xin Chu, Yong Dai, Junhua Shen. Study on microglia polarization in early neural injury mediated by thermal injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2019, 05(05): 299-303.

目的

观察小胶质细胞在热损伤介导的早期神经损伤中的极化状态并探讨其可能机制。

方法

通过建立Beagle犬热射病动物模型,按随机数字表法将18只Beagle犬分为正常对照组(A组)9只,根据热损伤后不同时间点(1、6、24 h)分为B、C、D组各3只,B~D组置于动物体温维持仪的电热毯上,温度设置为40℃±0.5℃,每5 min监测1次直肠温度直至达到40℃。建模成功后转移到26℃±0.5℃温度和60%±0.5%湿度的环境。4组18只Beagle犬均取下丘脑进行Western blot检测,检测小胶质细胞特异性标志物CD45、iNOS及Arginase、CD206分别在4组小胶质细胞中的表达。进一步免疫组织荧光共定位观察CD45、Arginase表达。

结果

A组检测出少许CD45及iNOS蛋白,B、C组两种蛋白标志物均显著高于A组(P<0.05),而D组较A组差异无统计学意义(P>0.05);A组检测出少许Arginase及CD206蛋白,B、C、D组两种蛋白标志物均高于A组,差异有统计学意义(P<0.05)。免疫组织荧光共定位CD45、Arginase,分别在热损伤后6 h和24 h荧光光密度显著增强,差异有统计学意义(P<0.001)。

结论

热射病后Beagle犬脑组织可见小胶质细胞极化活跃,中枢神经系统损伤早期1~6 h小胶质细胞活化主要以M1型为主,6 h后则转化为M2为主,热射病后24 h M2型占优势。M1/M2极化趋势与热射病早期脑损伤的相互关系可能成为热射病中枢神经损伤关键。

Objective

To observe the polarization of microglia in early nerve injury mediated by thermal injury and investigate its possible mechanism.

Methods

Eighteen Beagle dogs were divided into control group (group A, n=9) according to the random number table method by establishing a Beagle dog heatstroke animal model. According to different time points after heat injury (1, 6, 24 h), the dogs were divided into group B, C, D with 3 dogs each. The experimental group were placed on the electric blanket of the animal temperature maintenance instrument; the temperature was set to 40℃±0.5℃, and the rectal temperature was monitored every 5 min until reaching 40℃. After successful modeling, transfer them to an environment of 26℃±0.5℃ temperature and 60%±0.5% humidity. Hypothalami were taken out from four groups of 18 Beagle dogs, and were subjected to Western blot analysis to detect the expression of microglia-specific markers CD45, iNOS, Arginase and CD206 in 4 groups of microglia. Further immunohistochemical fluorescence co-localization was used to observe the expression of CD45 and Arginase.

Results

A little CD45 and iNOS protein were detected in group A. The two protein markers in group B and C were significantly higher than those in group A (P<0.05). There was no statistically significant difference between the group D and group A (P>0.05). A little Arginase and CD206 protein were also detected in group A. The two protein markers in group B, C, D were higher than those in group A (P<0.05). Immunofluorescence co-localization of CD45 and Arginase showed significantly increased fluorescence density at 6 h and 24 h after thermal injury (P<0.001).

Conclusion

After heat stroke, microglia were active in the brain tissue of Beagle dogs. The microglia activated in the early 1-6 h of central nervous system injury was mainly the M1 type, which then converted to M2 type after 6 h. After 24 h M2 type was dominant. The relationship between M1/M2 polarization trends and early brain injury in heat-induced disease may be a key to central nervous system injury in heat-induced disease.

图1 4组热损伤后小胶质细胞M1/M2蛋白表达
图2 免疫组织荧光共定位M1/M2型标志物表达
[1]
刘树元,宋景春,毛汉丁,等.中国热射病诊断与治疗专家共识[J].解放军医学杂志, 2019, 44(3): 9-24.
[2]
Baud O,Saint-Faust M. Neuroinflammation in the developing brain: risk factors, involvement of microglial cells, and implication for early anesthesia[J]. Anesth Analg, 2019, 128(4): 718-725.
[3]
Huang M,Li Y,Wu K, et al. Paraquat modulates microglia M1/M2 polarization via activation of TLR4-mediated NF-κB signaling pathway[J]. Chem Biol Interact, 2019, 310: 108743.
[4]
杜力文,石永伟,许兆军.热射病动物模型综述[J].现代实用医学, 2019, 31(4): 563-565.
[5]
王明,王红伟,张嘉慧,等.热射病与多脏器损伤的研究进展[J].医学综述, 2019, 25(13): 78-83.
[6]
Du Y,Xu JT,Jin HN, et al. Increased cerebral expressions of MMPs, CLDN5, OCLN, ZO1 and AQPs are associated with brain edema following fatal heat stroke[J]. Scientific Reports, 2017, 7(1): 1691.
[7]
Higareda-Basilio AE,Trujillo-Narvaez FA,Jaramillo-Ramirez HJ. Mortality and functional disability in heat stroke[J]. Salud Publica Mex, 2019, 61(2): 99-100.
[8]
郭佳,宋思奇,王克宇.热射病小鼠大脑皮层组织中炎症细胞因子水平及P38MAPK/P65NF-κB信号通路变化[J].吉林大学学报(医学版), 2019, 45(3): 566-571.
[9]
Liu J,Wan M,Zhang Y, et al. Dysfunction of iron metabolism and iron-regulatory proteins in the rat hippocampus after heat stroke[J]. Shock, 2019, 51(6): 780-786.
[10]
刘军,王宫,何根林,等.热射病小鼠早期中枢神经炎症和外周炎症的变化[J].第三军医大学学报, 2017, 39(4): 311-316.
[11]
李萍,罗雪,何根林,等.热应激对小鼠脾淋巴细胞活性及炎性基因表达的影响[J].东南国防医药, 2019, 21(2): 113-118.
[12]
Biedenkapp JC,Leon LR. Increased cytokine and chemokine gene expression in the CNS of mice during heat stroke recovery[J]. Am J Physiol Regul Integr Comp Physiol, 2013, 305(9): R978.
[13]
袁睿,杨萌萌,张宇,等.热射病中枢神经系统损伤及防治研究进展[J].解放军医学院学报, 2018, 39(235), 1180-1183+103.
[14]
Jha MK,Jo M,Kim JH, et al. Microglia-astrocyte crosstalk: an intimate molecular conversation[J]. Neuroscientist, 2019, 25(3): 227-240.
[15]
赵瑾. M1型和M2型小胶质细胞/巨噬细胞在缺血性脑中风中的功能[D].兰州:兰州大学, 2019.
[16]
陈华波,黄艳丽,翟立红,等.靶向星形胶质细胞治疗缺血性脑卒中的研究进展[J].生命科学, 2019, 31(7): 39-45.
[17]
张美,狄婷婷,王瑞婷,等.转基因阿尔茨海默病模型炎症调节机制[J].中国老年学杂志, 2016, 36(24): 6322-6324.
[18]
姜宇,周仁华,沈骏,等.星型胶质细胞在帕金森病大鼠中脑、脑室下区的分布和体外培养分化特征[J].神经解剖学杂志, 2017, 33(1): 71-75.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[3] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[4] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[5] 钱晓英, 吴新, 徐婷婷. 颅脑损伤并发呼吸衰竭患者早期机械通气的效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 526-528.
[6] 刘玲, 肖颖, 王蓉. 严重创伤并发肺部感染死亡病例分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 581-583.
[7] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[8] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[9] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[10] 李飞翔, 段虎斌, 李晋虎, 吴昊, 王永红, 范益民. 急性颅脑损伤继发下肢静脉血栓的相关危险因素分析及预测模型构建[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 277-282.
[11] 潘立, 谢理政, 程宏伟, 茆翔. 创伤性颅脑损伤后垂体功能减退[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 308-312.
[12] 王景景, 符锋, 李建伟, 任党利, 陈翀, 刘慧, 孙洪涛, 涂悦. 针刺对中型创伤性颅脑损伤后BDNF/TrkB信号通路的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 199-205.
[13] 张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.
[14] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[15] 丁晶, 李培雯, 许迎春. 醒脑开窍针刺法在神经急重症中的应用[J]. 中华针灸电子杂志, 2023, 12(04): 161-164.
阅读次数
全文


摘要