切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2019, Vol. 05 ›› Issue (02) : 106 -109. doi: 10.3877/cma.j.issn.2095-9141.2019.02.010

所属专题: 文献

基础研究

创伤性闭合性中型颅脑损伤动物模型的建立
钟旺旺1, 魏梁锋1, 陈伟强2, 李田飞1, 张灏1, 王守森1,()   
  1. 1. 350025 福州,联勤保障部队第九〇〇医院(原南京军区福州总医院)神经外科
    2. 515041 汕头,汕头大学医学院第一附属医院神经外科
  • 收稿日期:2018-11-10 出版日期:2019-04-15
  • 通信作者: 王守森
  • 基金资助:
    全军后勤科技重大项目(AHJ14J001)

Establishment of closed and moderate traumatic brain injury animal model

Wangwang Zhong1, Liangfeng Wei1, Weiqiang Chen2, Tianfei Li1, Hao Zhang1, Shousen Wang1,()   

  1. 1. Department of Neurosurgery, 900 Hospital of the Joint Logistics Team (Fuzhou General Hospital of Nanjing Military Command), Fuzhou 350025, China
    2. Department of Neurosurgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
  • Received:2018-11-10 Published:2019-04-15
  • Corresponding author: Shousen Wang
  • About author:
    Corresponding author: Wang Shousen, Email:
引用本文:

钟旺旺, 魏梁锋, 陈伟强, 李田飞, 张灏, 王守森. 创伤性闭合性中型颅脑损伤动物模型的建立[J]. 中华神经创伤外科电子杂志, 2019, 05(02): 106-109.

Wangwang Zhong, Liangfeng Wei, Weiqiang Chen, Tianfei Li, Hao Zhang, Shousen Wang. Establishment of closed and moderate traumatic brain injury animal model[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2019, 05(02): 106-109.

目的

构建一种创伤性闭合性中型颅脑损伤(TBI)动物模型。

方法

雄性SD大鼠80只,完全随机平均分为4组,每组20只,包括3组不同程度的TBI(A、B、C)组和假手术(N)组。参照Marmarou损伤模型,A、B、C组分别按拟定的打击高度(1.0、1.5、2.0 m)使重量为450 g的钢棒自由下落撞击大鼠头部建立TBI。观察各组大鼠伤后一般状况、神经行为学、脑组织形态学等改变。

结果

伤后14 d内,N、A、B、C组死亡率分别为0%、5%、20%、60%,随着致伤量的增加,死亡率增加(P<0.05),伤后各观察时间点神经功能缺损评分(mNSS)升高(P<0.05),均高于N组,差异均具有统计学意义。HE染色结果提示,与N组比较,随着致伤量的增加,光镜下可见基质疏松、神经元细胞周围间隙和血管间隙增宽、神经元细胞排列紊乱且变性、神经胶质肿胀变性程度更加明显。免疫组织化学染色结果提示,与N组比较,A、B、C组大脑皮质β-APP、NF-L阳性表达程度增强。

结论

以450 g的钢棒自1.5 m高处自由打击大鼠颅骨可成功建立创伤性闭合性中型颅脑损伤动物模型,其病理学特征明显,重复性和稳定性好。

Objective

To establish the closed moderate traumatic brain injury animal model.

Methods

Eighty male SD rats were randomly divided into 4 groups, 20 in each group, including three groups with different degrees of brain injury (A, B, C) and sham operation (N). Referring to Marmarou injury model, group A, B and C made the steel bar weighing 450 g fall freely and hit the rat head to establish TBI according to the designed strike height (1.0, 1.5, 2.0 m). The general condition, neurobehavioral and brain histomorphological changes were observed.

Results

Within 14 d after injury, the mortality rates of group N, A, B and C were 0%, 5%, 20% and 60%, respectively. With the increase of the amount of injury, the mortality rate increased (P<0.05). With the increase of the number of injuries, the neurological deficit score (mNSS) increased at each time point after injury (P<0.05), which was higher than that in group N. The results of HE staining showed that, compared with group N, with the increase of wound volume, HE staining showed matrix loosening, widening of pericellular space and vascular space of neurons, disordered arrangement and degeneration of neurons and swelling and degeneration of glia were more obvious under light microscope. The results of immunohistochemical staining showed that the positive expression of β-APP and NF-L in cerebral cortex of group A, B and C was higher than that of group N.

Conclusion

The steel bar weighted 450 g felled from the height of 1.5 m that hit against the middle of head of rat have established a relatively stable moderate closed TBI animal model with obviously pathological features changes and more stable and repeatable than other groups.

表1 各组大鼠伤后各时间点mNSS评分组间比较(±s
图1 各组建模24 h后大脑皮质HE染色(×400)
图2 各组大鼠建模24 h后脑组织损伤区免疫组织化学染色(×400)
[1]
Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury[J]. J Head Trauma Rehabil, 2006, 21(5): 375-378.
[2]
张小年,张皓.创伤性颅脑损伤国内研究进展[J].中国康复理论与实践, 2008, 14(2): 101-104.
[3]
马锦华,高静,王珊珊,等.西安市2025例颅脑损伤住院患者临床及流行病学特点[J].创伤外科杂志, 2017, 19(6): 411-416.
[4]
Marmarou A, Foda MA, van den Brink W, et al. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics[J]. J Neurosurg, 1994, 80(2): 291-300.
[5]
Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J]. Stroke, 2001, 32(4): 1005-1011.
[6]
Dixon CE, Lyeth BG, Povlishock JT, et al. A fluid percussion model of experimental brain injury in the rat[J]. J Neurosurg, 1987, 67(1): 110-119.
[7]
Lighthall JW. Controlled cortical impact: a new experimental brain injury model[J]. J Neurotrauma, 1988, 5(1): 1-15.
[8]
Dixon CE, Clifton GL, Lighthall JW, et al. A controlled cortical impact model of traumatic brain injury in the rat[J]. J Neurosci Methods, 1991, 39(3): 253-262.
[9]
Leung LY, Vandevord PJ, Dal Cengio AL, et al. Blast related neurotrauma: a review of cellular injury[J]. Mol Cell Biomech, 2008, 5(5): 155-168.
[10]
Gennarelli TA, Thibault LE, Adams JH, et al. Diffuse axonal injury and traumatic coma in the primate[J]. Ann Neurol, 1982, 12(6): 564-574.
[11]
Sherriff FE, Bridges LR, Sivaloganathan S. Early detection of axonal injury after human head trauma using immunocytochemistry for beta-amyloid precursor protein[J]. Acta Neuropathol, 1994, 87(1): 55-62.
[12]
Chen XH, Meaney DF, Xu BN, et al. Evolution of neurofilament subtype accumulation in axons following diffuse brain injury in the pig[J]. J Neuropathol Exp Neurol, 1999, 58(6): 588-596.
[13]
向玲,张雨婷,韦红,等. β-APP和NF-L在评估弥漫性轴索损伤大鼠损伤程度中的价值[J].第三军医大学学报, 2015, 37(22): 2255-2260.
[14]
Li J, Li XY, Feng DF, et al. Quantitative evaluation of microscopic injury with diffusion tensor imaging in a rat model of diffuse axonal injury[J]. Eur J Neurosci, 2011, 33(5): 933-945.
[15]
Arfanakis K, Haughton VM, Carew JD, et al. Diffusion tensor MR imaging in diffuse axonal injury[J]. AJNR Am J Neuroradiol, 2002, 23(5): 794-802.
[16]
Li J, Li XY, Feng DF, et al. Biomarkers associated with diffuse traumatic axonal injury: exploring pathogenesis, early diagnosis, and prognosis[J]. J Trauma, 2010, 69(6): 1610-1618.
[17]
Romero Tirado MLÁ, Blanco Pampin JM, Gallego Gómez R. Dating of traumatic brain injury in forensic cases using immunohistochemical markers (I): neurofilaments and β-amyloid precursor protein[J]. Am J Forensic Med Pathol, 2018, 39(3): 201-207.
[18]
刘勃,尹鹏滨,周浩,等.一种模拟大鼠不同程度颅脑损伤模型的构建与评估[J].解放军医学院学报, 2017, 38 (1): 47-51.
[19]
张源,张文进,田毅,等.大鼠创伤性颅脑损伤程度与血清MCP-1、VEGF及损伤区CD34+细胞表达水平的关系[J].中华神经医学杂志, 2014, 13(3): 224-228.
[20]
Harris NG, Mironova YA, Chen SF, et al. Preventing flow-metabolism uncoupling acutely reduces axonal injury after traumatic brain injury[J]. J Neurotrauma, 2012, 29(7): 1469-1482.
[1] 黄钰清, 武杜杜, 潘菲, 王俊康, 钟兆明, 黎檀实, 吕发勤. 掌上超声在枪弹伤致髂动脉破裂大出血建模中的应用研究[J]. 中华医学超声杂志(电子版), 2022, 19(10): 1112-1117.
[2] 李传举, 刘林月, 王美, 李昕, 韩祥辉, 贾海永. 乙型肝炎病毒感染模型研究进展[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 361-365.
[3] 邵世锋, 伍正彬, 段朝霞, 张良潮, 王耀丽, 李琦, 王建民. 山羊高原重度原发性肺冲击伤模型的建立[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 637-642.
[4] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[5] 潘立, 谢理政, 程宏伟, 茆翔. 创伤性颅脑损伤后垂体功能减退[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 308-312.
[6] 张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.
[7] 王景景, 符锋, 李建伟, 任党利, 陈翀, 刘慧, 孙洪涛, 涂悦. 针刺对中型创伤性颅脑损伤后BDNF/TrkB信号通路的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 199-205.
[8] 何佳伟, 张良, 杨骐, 王占祥. 创伤性颅脑损伤后进展性出血性损伤的诊疗现状[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 175-179.
[9] 王召, 田进杰, 郭朝, 王蕾, 严红燕, 冯素娟, 张毅. 血浆PGK1早期检测对创伤性颅脑损伤患者病情严重程度及预后的预测价值[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 154-159.
[10] 贾素英, 李倩, 郭姗姗. 创伤性颅脑损伤后血小板功能障碍的研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 180-185.
[11] 张永明. 颈段脊髓电刺激治疗颅脑损伤后慢性意识障碍的进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 129-134.
[12] 李文臣, 李日, 韩霖, 张舒岩. 正中神经电刺激对创伤性颅脑损伤昏迷促醒作用的Meta分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 269-275.
[13] 卢维新, 严贵忠, 任海军. 近红外光谱技术在创伤性颅脑损伤中的应用研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 311-314.
[14] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[15] 高飞, 李惠凯, 冯秀雪, 杜晨, 韩珂, 柴宁莉, 令狐恩强. 3%聚桂醇消融动物囊性肿瘤模型的有效性和安全性研究[J]. 中华胃肠内镜电子杂志, 2023, 10(01): 31-36.
阅读次数
全文


摘要