[1] |
Clifton GL, Allen S, Barrodale P, et al. A phase II study of moderate hypothermia in severe brain injury[J]. J Neurotrauma, 1993, 10(3): 263-271, discussion 273.
|
[2] |
Marion DW, Obrist WD, Earlier PM, et al. The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report[J]. J Neurosurg, 1993, 79(3): 354-362.
|
[3] |
Oku T, Fujii M, Tanaka N, et al. The influence of focal brain cooling on neurophysiopathology: validation for clinical application[J]. J Neurosurg, 2009, 110(6): 1209-1217.
|
[4] |
Clark DL, Penner M, Wowk S, et al. Treatments (12 and 48 h) with systemic and brain-selective hypothermia techniques after permanent focal cerebral ischemia in rat[J]. Exp Neurol, 2009, 220(2): 391-399.
|
[5] |
Sun H, Zheng M, Wang Y, et al. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment[J]. Neuropsychiatr Dis Treat, 2016, 12: 2125-2129.
|
[6] |
Dong HJ, Zhao ML, Li XH, et al. Hypothermia-modulating matrix elasticity of injured brain promoted neural lineage specification of mesenchymal stem cells[J]. Neuroscience, 2018, 377: 1-11.
|
[7] |
Zhang FC, Dong HP, Lv T, et al. Moderate hypothermia inhibits microglial activation after traumatic brain injury by modulating autophagy/apoptosis and the MyD88-dependent TLR4 signaling pathway[J]. J Neuroinflammation, 2018, 15(1): 273.
|
[8] |
Liu B, Wang L, Cao Y, et al. Hypothermia pretreatment improves cognitive impairment via enhancing synaptic plasticity in a traumatic brain injury model[J]. Brain Res, 2017, 1672: 18-28.
|
[9] |
Jin Y, Lin Y, Feng JF, et al. Moderate hypothermia significantly decreases hippocampal cell death involving autophagy pathway after moderate traumatic brain injury[J]. J Neurotrauma, 2015, 32(14): 1090-1100.
|
[10] |
Mattison KA, Butler KM, Inglis GAS, et al. SLC6A1 variants identified in epilepsy patients reduce γ-aminobutyric acid transport[J]. Epilepsia, 2018, 59: e135-e141.
|
[11] |
Princivalle AP, Duncan JS, Thom M, et al. GABA(B1a), GABA(B1b) and GABA(B2) mRNA variants expression in hippocampus resected from patients with temporal lobe epilepsy[J]. Neuroscience, 2003, 122(4): 975-984.
|
[12] |
Saadoun S, Papadopoulos MC. Aquaporin-4 in brain and spinal cord oedema[J]. Neuroscience, 2010, 168(4): 1036-1046.
|
[13] |
Tait MJ, Saadoun S, Bell BA, et al. Increased brain edema in aqp4-null mice in an experimental model of subarachnoid hemorrhage[J]. Neuroscience, 2010, 167(1): 60-67.
|
[14] |
Tang Y, Wu P, Su J, et al. Effects of aquaporin-4 on edema formation following intracerebral hemorrhage[J]. Exp Neurol, 2010, 223(2): 485-495.
|
[15] |
Kapoor S, Kim SM, Farook JM, et al. Foxo3a transcriptionally upregulates AQP4 and induces cerebral edema following traumatic brain injury[J]. J Neurosci, 2013, 33(44): 17398-17403.
|
[16] |
Marmarou CR, Liang X, Abidi NH, et al. Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury[J]. Brain Res, 2014, 1581(10): 89-102.
|