切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2017, Vol. 03 ›› Issue (05) : 277 -283. doi: 10.3877/cma.j.issn.2095-9141.2017.05.006

所属专题: 文献

基础研究

RIP3介导的坏死性凋亡在C57BL/6小鼠颅脑创伤模型中的作用
于泽奇1, 衣泰龙2, 涂悦2, 杨小飒2, 江继鹏2, 董晓煜3, 张赛2, 程世翔2,()   
  1. 1. 610041 成都,武警四川总队成都医院外一科
    2. 300162 天津,武警后勤学院附属医院脑科医院
    3. 100621 北京,北京武警总队三支队卫生队
  • 收稿日期:2017-05-08 出版日期:2017-10-15
  • 通信作者: 程世翔
  • 基金资助:
    国家自然科学基金项目(31200809); 武警部队后勤科研项目(WJHQ2012-20); 军队技术产品研究重大项目(AWS15J001); 天津市科技计划项目(15ZXLCSY00040)

Effects of necroptosis induced by receptor interacting-protein 3 in traumatic brain injury model of C57/BL mice

Zeqi Yu1, Tailong Yi2, Yue Tu2, Xiaosa Yang2, Jipeng Jiang2, Xiaoyu Dong3, Sai Zhang2, Shixiang Cheng2,()   

  1. 1. First Department of Surgery, the Chengdu Hospital of Sichuan Armed Police Corps, Chengdu 610041, China
    2. Neurology and Neurosurgery Hospital, Affiliated Hospital of Logistics College of Chinese People’s Armed Police Force, Tianjin 300162, China
    3. Medical Unit of Three Department of Beijing Armed Police Corps, Beijing 100621, China
  • Received:2017-05-08 Published:2017-10-15
  • Corresponding author: Shixiang Cheng
  • About author:
    Corresponding author: Cheng Shixiang, Email:
引用本文:

于泽奇, 衣泰龙, 涂悦, 杨小飒, 江继鹏, 董晓煜, 张赛, 程世翔. RIP3介导的坏死性凋亡在C57BL/6小鼠颅脑创伤模型中的作用[J]. 中华神经创伤外科电子杂志, 2017, 03(05): 277-283.

Zeqi Yu, Tailong Yi, Yue Tu, Xiaosa Yang, Jipeng Jiang, Xiaoyu Dong, Sai Zhang, Shixiang Cheng. Effects of necroptosis induced by receptor interacting-protein 3 in traumatic brain injury model of C57/BL mice[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2017, 03(05): 277-283.

目的

探讨受体相互作用蛋白3(RIP3)介导的坏死性凋亡在C57BL/6小鼠颅脑创伤(TBI)模型中的作用及其机制。

方法

采用电子控制性皮质撞击仪(CCI),设定打击参数(速度5 m/s、时间120 ms、深度1 mm),对小鼠顶叶大脑皮质进行精确撞击,建立颅脑创伤模型。将80只雄性C57BL/6小鼠随机分为4组,每组20只:Ctrl组不予处理,Sham组仅开骨窗,TBI组CCI打击后原位注射4 μl的DMSO,GSK’872组CCI打击后原位注射4 μl的GSK’872。再采用改良型神经功能缺损评分(mNSS)量表评估小鼠颅脑创伤后损伤程度,脑干湿比重法检测颅脑创伤后脑水肿程度,HE染色法检测小鼠脑皮层及海马区损伤程度,以创伤后觉醒时间评价损伤后恢复情况,Western blot法检测RIP3/RIP1/混合连接激酶结构域样蛋白(MLKL)、Akt/p-Akt/哺乳动物雷帕霉素靶蛋白(mTOR)/p-mTOR、含半胱氨酸的天冬氨酸蛋白水解酶8(Caspase-8)/X连锁凋亡抑制蛋白(XIAP)、Caspase-1/核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)蛋白表达变化。

结果

与TBI组相比,GSK’872可明显降低mNSS评分[1 d:(11.95±1.50)vs(13.05±1.82),t=2.084,P<0.05;3 d:(8.95±1.39)vs(11.00±2.10),t=3.634,P<0.01;5 d:(6.75±1.33)vs(8.90±1.52),t=4.759,P<0.01;7 d:(4.00±1.08)vs(7.15±1.09),t=9.200,P<0.01],同时可明显减轻脑水肿程度[(77.91±0.84)% vs(80.34±0.94)%,t=8.692,P<0.01],减轻皮层及海马区损伤程度,并促进创伤后觉醒[(4.08±0.63)h vs(5.11±0.74)h,t=4.717,P<0.01]。Western blot结果显示,与TBI组相比,应用GSK’872后能降低RIP3[(0.70±0.03)vs(1.04±0.04),t=13.051,P<0.01]、RIP1[(0.93±0.02)vs(1.16±0.03),t=11.203,P<0.01]、MLKL[(0.75±0.04)vs (1.03±0.03),t=9.873,P<0.01]、Akt[(0.55±0.04)vs(0.77±0.05),t=6.278,P<0.01]、p-Akt[(0.80±0.04)vs(0.99±0.04),t=6.217,P<0.01]、mTOR[(0.48±0.05)vs(0.90±0.05),t=10.608,P<0.05]、p-mTOR[(0.59±0.06)vs(1.00±0.05),t=9.144,P<0.01]、Caspase-1[(0.80±0.04)vs(0.98±0.05),t=5.226,P<0.01]、NLRP3[(0.51±0.03)vs(0.89±0.03),t=15.590,P<0.01]、XIAP[(0.50±0.03)vs(0.83±0.03),t=13.340,P<0.01]蛋白表达,并可促进Caspase-8持续升高[(0.83±0.03)vs(0.71±0.03),t=5.044,P<0.01],差异具有统计学意义。

结论

RIP3介导的坏死性凋亡在小鼠颅脑创伤中起重要作用,应用GSK’872可减轻小鼠颅脑创伤后的损伤程度,提示RIP3有可能成为将来临床上治疗颅脑创伤新的靶点。

Objective

To investigate the effects of necroptosis induced by receptor interacting-protein 3 (RIP3) on traumatic brain injury (TBI) model of C57BL/6 mice and its mechanisms.

Methods

C57BL/6 mice were positioned beneath the controlled cortical impactor device (CCI) and subjected to impact injury at 1 mm depth of penetration, for a sustained depression of 120 msec and a velocity of 5 m/s. Ctrl group was not treated. Sham group was received craniotomy, without CCI injury. TBI group was received CCI injury and 4 μl DMSO injected. GSK’872 group was received CCI injury and 4 μl GSK’872 injected. Then, the degree of injury was detected by modified neurological severity scores (mNSS), the degree of brain edema was measured with drying wet method, the injure degree of cortex and hippocampus was assessed by HE staining, the recovery after CCI was measured by awakening time and the expressions of RIP3/RIP1/MLKL, Akt/p-Akt/mTOR/p-mTOR, Caspase-8/XIAP, Caspase-1/NLRP3 were detected by Western blot assay.

Results

Compared with TBI group, GSK’872 could significantly decrease the score of mNSS [1 d: (11.95±1.50) vs (13.05±1.82), t=2.084, P<0.05; 3 d: (8.95±1.39) vs (11.00±2.10), t=3.634, P<0.01: 5 d: (6.75±1.33) vs (8.90±1.52), t=4.759, P<0.01; 7 d: (4.00±1.08) vs (7.15±1.09), t=9.200, P<0.01], decrease the degree of brain edema [(77.91±0.84)% vs (80.34±0.94)%, t=8.692, P<0.01], reduce the degree of injury in cortex and hippocampus, and promote the awaking of mice after CCI[(4.08±0.63) h vs (5.11±0.74) h, t=4.717, P<0.01]. Furthermore, Western blotting assay reveled that GSK’872 could significantly decrease the levels of RIP3[(0.70±0.03) vs(1.04±0.04), t=13.051, P<0.01], RIP1[(0.93±0.02) vs (1.16±0.03), t=11.203, P<0.01], MLKL[(0.75±0.04) vs (1.03±0.03), t=9.873, P<0.01], Akt[(0.55±0.04) vs (0.77±0.05), t=6.278, P<0.01], p-Akt[(0.80±0.04) vs (0.99±0.04), t=6.217, P<0.01], mTOR[(0.48±0.05) vs (0.90±0.05), t=10.608, P<0.05], p-mTOR[(0.59±0.06) vs (1.00±0.05), t=9.144, P<0.01], Caspase-1[(0.80±0.04) vs (0.98±0.05), t=5.226, P<0.01], NLRP3[(0.51±0.03) vs (0.89±0.03), t=15.590, P<0.01], XIAP[(0.50±0.03) vs (0.83±0.03), t=13.340, P<0.01], but increase the level of Caspase-8 compared with TBI group [(0.83±0.03) vs (0.71±0.03), t=5.044, P<0.01].

Conclusion

Necroptosis induced by RIP3 may play an important role in TBI, however, GSK’872 could reduce the degree of injury after TBI, which reveals that RIP3 may be a new target for clinical treatment of TBI in the future.

图1 小鼠神经功能缺陷情况
图2 小鼠脑组织含水量比较
图3 小鼠脑组织HE染色(×400)
图4 小鼠CCI损伤后觉醒时间比较
图5 受体相互作用蛋白3、受体相互作用蛋白1、混合连接激酶结构域样蛋白表达变化
图6 Akt、p-Akt、mTOR、p-mTOR蛋白表达变化
图7 Caspase-8、XIAP蛋白表达变化
图8 Caspase-1、NLRP3蛋白表达变化
[1]
Mckee AC,Daneshvar DH. The neuropathology of traumatic brain injury[J]. Handb Clin Neurol, 2015, 127: 45-66.
[2]
Mazzeo AT,Filippini C,Rosato R, et al. Multivariate projection method to investigate inflammation associated with secondary insults and outcome after human traumatic brain injury: a pilot study[J]. J Neuroinflammation, 2016, 13(1): 157.
[3]
Bleriot C,Lecuit M. The interplay between regulated necrosis and bacterial infection[J]. Cell Mol Life Sci, 2016, 73(11-12): 2369-2378.
[4]
Takemoto K,Hatano E,Iwaisako K, et al. Necrostatin-1 protects against reactive oxygen species (ROS)-induced hepatotoxicity in acetaminophen-induced acute liver failure[J]. FEBS Open Bio, 2014, 4: 777-787.
[5]
Karunakaran D,Geoffrion M,Wei L, et al. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis[J]. Sci Adv, 2016, 2(7): e1600224.
[6]
Xu Y,Wang J,Song X, et al. RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF[J]. Sci Rep, 2016, 6: 29362.
[7]
Kitur K,Wachtel S,Brown A, et al. Necroptosis promotes staphylococcus aureus clearance by inhibiting excessive inflammatory signaling[J]. Cell Rep, 2016, 16(8): 2219-2230.
[8]
Bozec D,Iuga AC,Roda G, et al. Critical function of the necroptosis adaptor RIPK3 in protecting from intestinal tumorigenesis[J]. Oncotarget, 2016, 7(29): 46384-46400.
[9]
Zhang DW,Shao J,Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis[J]. Science, 2009, 325(5938): 332-336.
[10]
Su Z,Yang Z,Xie L, et al. Cancer therapy in the necroptosis era[J]. Cell Death Differ, 2016, 23(5): 748-756.
[11]
Das A,McDonald DG,Dixon-Mah YN, et al. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma[J]. Tumour Biol, 2016, 37(6): 7525-7534.
[12]
Gerges S,Rohde K,Fulda S. Cotreatment with Smac mimetics and demethylating agents induces both apoptotic and necroptotic cell death pathways in acute lymphoblastic leukemia cells[J]. Cancer Lett, 2016, 375(1): 127-132.
[13]
Zaidi HA,Zabramski JM,Safavi-Abbasi S, et al. Spontaneous intracerebral hemorrhage[J]. World Neurosurg, 2015, 84(5): 1191-1192.
[14]
Liu T,Bao YH,Wang Y, et al. The role of necroptosis in neurosurgical diseases[J]. Braz J Med Biol Res, 2015, 48(4): 292-298.
[15]
Degterev A,Hitomi J,Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins[J]. Nat Chem Biol, 2008, 4(5): 313-321.
[16]
Sun L,Wang H,Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase[J]. Cell, 2012, 148(1-2): 213-227.
[17]
Galluzzi L,Kepp O,Kroemer G. MLKL regulates necrotic plasma membrane permeabilization[J]. Cell Res, 2014, 24(2): 139-140.
[18]
He S,Wang L,Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha[J]. Cell, 2009, 137(6): 1100-1111.
[19]
Liu T,Zhao DX,Cui H, et al. Therapeutic hypothermia attenuates tissue damage and cytokine expression after traumatic brain injury by inhibiting necroptosis in the rat[J]. Sci Rep, 2016, 6: 24547.
[20]
Noshita N,Lewén A,Sugawara T, et al. Akt phosphorylation and neuronal survival after traumatic brain injury in mice[J]. Neurobiol Dis, 2002, 9(3): 294-304.
[21]
Crino PB. The mTOR signalling cascade: paving new roads to cure neurological disease[J]. Nat Rev Neurol, 2016, 12(7): 379-392.
[22]
Park J,Zhang J,Qiu J, et al. Combination therapy targeting Akt and mammalian target of rapamycin improves functional outcome after controlled cortical impact in mice[J]. J Cereb Blood Flow Metab, 2012, 32(2): 330-340.
[23]
Liu Q,Qiu J,Liang M, et al. Akt and mTOR mediate programmed necrosis in neurons[J]. Cell Death Dis, 2014, 5: e1084.
[24]
Günther C,Martini E,Wittkopf N, et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis[J]. Nature, 2011, 477(7364): 335-339.
[25]
Kim JW,Choi EJ,Joe CO. Activation of death-inducing signaling complex (DISC) by pro-apoptotic C-terminal fragment of RIP[J]. Oncogene, 2000, 19(39): 4491-4499.
[26]
Challa S,Chan FK. Going up in flames: necrotic cell injury and inflammatory diseases[J]. Cell Mol Life Sci, 2010, 67(19): 3241-3253.
[27]
Kaiser WJ,Sridharan H,Huang C, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL[J]. J Biol Chem, 2013, 288(43): 31268-31279.
[28]
Wallach D,Kang TB,Dillon CP, et al. Programmed necrosis in inflammation: Toward identification of the effector molecules[J]. Science, 2016, 352(6281): aaf2154.
[29]
Newton K,Manning G. Necroptosis and inflammation[J]. Annu Rev Biochem, 2016, 85: 743-763.
[30]
Pasparakis M,Vandenabeele P. Necroptosis and its role in inflammation[J]. Nature, 2015, 517(7534): 311-320.
[31]
Menu P,Vince JE. The NLRP3 inflammasome in health and disease: the good, the bad and the ugly[J]. Clin Exp Immunol, 2011, 166(1): 1-15.
[1] 吴锡文, 彭宝岗, 沈顺利. 坏死性凋亡在肝内胆管细胞癌和肝细胞癌分化过程中的作用[J]. 中华肝脏外科手术学电子杂志, 2021, 10(01): 108-110.
[2] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[3] 程岗. "融合"理念在军队颅脑创伤亚专科人才培养中的意义[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 48-50.
[4] 张华, 刘广明, 刘国成, 张姝红, 陈大莉, 蒲小龙, 王志友, 李倩. 基于决策树法构建创伤性颅脑损伤术后硬脑膜下积液的风险预测模型[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 19-25.
[5] 吴钟华, 龙连圣, 李夏良, 王伟, 施顺孝, 方文杰, 谢虎, 辛志成, 蒋超超, 盛文国, 于晓敏. 颅底探查和重建在急性颅脑损伤开颅术中的意义[J]. 中华神经创伤外科电子杂志, 2021, 07(02): 96-99.
[6] 邹隽风, 黄贤键, 吴楚伟, 苏高健. 中国颅脑创伤流行病学中存在的部分问题探讨[J]. 中华神经创伤外科电子杂志, 2021, 07(01): 59-62.
[7] 王守森, 鲜亮. 静脉循环障碍在颅脑创伤术中急性脑膨出的作用[J]. 中华神经创伤外科电子杂志, 2020, 06(06): 321-324.
[8] 柴慈婧, 涂悦, 张启财, 侯伊玲. 抗tau蛋白抗体基因疗法对慢性颅脑创伤的治疗作用研究[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 292-298.
[9] 张建宁. 颅脑创伤后脑水肿机制的研究进展[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 257-258.
[10] 胡晓芳, 赵琳, 张尚明, 杨德晓, 王守森. 颅内压监测下降阶梯减压技术在创伤后脑疝患者术中的应用[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 254-256.
[11] 路旭, 杨俊丽, 王娜, 周沁晔, 符锋. 慢性创伤性脑病研究进展[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 244-247.
[12] 李在雨, 陈子阳, 关北漩, 侯文仲, 杨经文. 颅脑创伤术后非感染性发热的原因分析与处理[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 241-243.
[13] 刘性强, 王文豪, 白映红, 李存晓, 李斌. 二甲双胍下调水通道蛋白4表达改善大鼠颅脑创伤早期脑水肿的研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 221-226.
[14] 朱红玉, 扈玉华, 王洪生. 血栓弹力图在神经外科的临床应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(01): 57-60.
[15] 黄锦庆, 邹敏刚, 郭鸿华, 吴至武, 黄伟龙, 刘俊, 张柏林, 胡坤, 叶新运, 张震宇, 杨瑞金, 蒋秋华. 脑外伤性与医源性颅内假性动脉瘤的临床特点及其血管内治疗的效果分析(附7例报道)[J]. 中华脑血管病杂志(电子版), 2020, 14(06): 346-351.
阅读次数
全文


摘要