[1] |
McKee AC, Stern RA, Nowinski CJ, et al. The spectrum of disease in chronic traumatic encephalopathy[J]. Brain, 2013, 136(Pt 1):43-64.
|
[2] |
Montenigro PH, Baugh CM, Daneshvar DH, et al. Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome[J]. Alzheimers Res Ther, 2014, 6(5): 68.
|
[3] |
Kondo A, Shahpasand K, Mannix R, et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy[J]. Nature, 2015, 523(7561): 431-436.
|
[4] |
Yu YJ, Watts RJ. Developing therapeutic antibodies for neurodegenerative disease[J]. Neurotherapeutics, 2013, 10(3): 459-472.
|
[5] |
Sigurdsson EM. Tau immunotherapies for Alzheimer’s disease and related tauopathies: progress and potential pitfalls[J]. J Alzheimers Dis, 2018, 66(2): 855-856.
|
[6] |
Zhang J, Teng Z, Song Y, et al. Inhibition of monoacylglycerol lipase prevents chronic traumatic encephalopathy-like neuropathology in a mouse model of repetitive mild closed head injury[J]. J Cereb Blood Flow Metab, 2015, 35(3): 443-453.
|
[7] |
Rosenberg JB, Kaplitt MG, De BP, et al. AAVrh.10-mediated APOE2 CNS gene therapy for APOE4-associated Alzheimer’s disease[J]. Hum Gene Ther Clin Dev, 2018, 29(1): 24-47.
|
[8] |
De BP, Heguy A, Hackett NR, et al. High levels of persistent expression of alphal-antitrypsin mediated by the nonhuman primate serotype rh.10 adeno-associated virus despite preexisting immunity to common human adeno-associated viruses[J]. Mol Ther, 2015, 13(1): 67-76.
|
[9] |
Liu W, Zhao L, Blackman B, et al. Vectored intracerebral immunization with the anti-tau monoclonal antibody PHF1 markedly reduces Tau pathology in mutant Tau transgenic mice[J]. J Neurosci, 2016, 36(49): 12425-12435.
|
[10] |
Lee SH, Le Pichon CE, Adolfsson O, et al. Antibody-mediated targeting of tau in vivo does not require effector function and microglial engagement[J]. Cell Rep, 2016, 16(6): 1690-1700.
|
[11] |
Bright J, Hussain S, Dang V, et al. Human secreted tau increases amyloid-beta production[J]. Neurobiol Aging, 2015, 36(2): 693-709.
|
[12] |
Nakamura K, Greenwood A, Binder L, et al. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease[J]. Cell, 2012, 149(1): 232-244.
|
[13] |
De BP, Chen A, Rosenberg JB, et al. In vivo potency assay for AAV-based gene therapy vectors[J]. Molecular Therapy, 2016, 24(1): S186.
|
[14] |
Stein TD, Alvarez VE, Mckee AC. Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel[J]. Alzheimers Res Ther, 2014, 6(1): 4.
|
[15] |
Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery[J]. J Inherit Metab Dis, 2013, 36(3): 437-449.
|
[16] |
Lee B, Leavitt MK, Bernick C, et al. A systematic review of positron emission tomography of tau, amyloid beta, and neuroinflammation in chronic traumatic encephalopathy: the evidence to date[J]. J Neurotrauma, 2018, 35(17): 2015-2024.
|
[17] |
Bolós M, Llorens-Martín M, Jurado-Arjona J, et al. Direct evidence of internalization of tau by microglia in vitro and in vivo[J]. J Alzheimers Dis, 2016, 50(1): 77-87.
|
[18] |
Shim SS, Stutzmann GE. Inhibition of glycogen synthase kinase-3: an emerging target in the treatment of traumatic brain injury[J]. J Neurotrauma, 2016, 33(23): 2065-2076.
|
[19] |
Shi H, Hua X, Kong D, et al. Role of toll-like receptor mediated signaling in traumatic brain injury[J]. Neuropharmacology, 2019, 145(Pt B): 259-267.
|
[20] |
Makani V, Zhang B, Han H, et al. Evaluation of the brain-penetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy[J]. Acta Neuropathol Commun, 2016, 4(1): 106.
|
[21] |
Jennings JS, Gerber AM, Vallano ML. Pharmacological strategies for neuroprotection in traumatic brain injury[J]. Mini Rev Med Chem, 2008, 8(7): 689-701.
|
[22] |
Uteshev VV, Tenovuo O, Gaidhani N. The cholinergic potential, the vagus nerve and challenges in treatment of traumatic brain injury[J]. Curr Pharm Des, 2016, 22(14): 2083-2092.
|
[23] |
Stoller KP. All the right moves: the need for the timely use of hyperbaric oxygen therapy for treating TBI/CTE/PTSD[J]. Med Gas Res, 2015, 5: 7.
|
[24] |
Albayram O, Kondo A, Mannix R, et al. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae[J]. Nat Commun, 2017, 8(1): 1000.
|
[25] |
Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies[J]. Nature, 1997, 388(6645): 839-840.
|
[26] |
Johnson VE, Stewart W, Arena JD, et al. Traumatic brain injury as a trigger of neurodegeneration[J]. Adv Neurobiol, 2017, 15: 383-400.
|
[27] |
Meraz-Ríos MA, Toral-Rios D, Franco-Bocanegra D, et al. Inflammatory process in Alzheimer’s disease[J]. Front Integr Neurosci, 2013, 7: 59.
|
[28] |
Hovakimyan A, Antonyan T, Shabestari SK, et al. A MultiTEP platform-based epitope vaccine targeting the phosphatase activating domain (PAD) of tau: therapeutic efficacy in PS19 mice[J]. Sci Rep, 2019, 9(1): 15455.
|
[29] |
Boluda S, Iba M, Zhang B, et al. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains[J]. Acta Neuropathol, 2015, 129(2): 221-237.
|
[30] |
Sankaranarayanan S, Barten DM, Vana L, et al. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models[J]. PLoS One, 2015, 10(5): e0125614.
|