切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2025, Vol. 11 ›› Issue (01) : 5 -16. doi: 10.3877/cma.j.issn.2095-9141.2025.01.002

基础研究

创伤性脑损伤急性期细胞焦亡关键分子的竞争性内源性RNA调控网络构建与验证
张瑜廉1, 党韩寒2, 张传鹏3, 何昆3, 陈鹏宇2, 张昀昇3, 王在4, 张黎1, 于炎冰1,()   
  1. 1. 100029 北京,中日友好医院神经外科
    2. 100730 北京,中国医学科学院北京协和医学院
    3. 100029 北京,北京大学中日友好临床医学院
    4. 100029 北京,中日友好医院呼吸医学中心呼吸与危重症医学科(国家呼吸疾病临床研究中心)
  • 收稿日期:2024-12-26 出版日期:2025-02-15
  • 通信作者: 于炎冰
  • 基金资助:
    国家重点研发计划项目(2022YFC2402500)国家自然科学基金项目(32300816、32471035)北京市自然科学基金-海淀原始创新联合基金资助(L222034)北京市自然科学基金资助项目(L242112)中日友好医院“菁英计划”人才培育工程(ZRJY2024-QM07)中央高水平医院临床科研业务费(2022-NHLHCRFYS-05)

Construction and validation of ceRNA network for pyroptosis-related molecules during the acute phase of traumatic brain injury

Yulian Zhang1, Hanhan Dang2, Chuanpeng Zhang3, Kun He3, Pengyu Chen2, Yunsheng Zhang3, Zai Wang4, Li Zhang1, Yanbing Yu1,()   

  1. 1. Department of Neurosurgery,China-Japan Friendship Hospital,Beijing 100029,China
    2. Peking Union Medical College,Chinese Academy of Medical Sciences,Beijing 100730,China
    3. Peking University China-Japan Friendship School of Clinical Medicine,Beijing 100029,China
    4. Department of Respiratory and Critical Care Medicine,Respiratory Medicine Center,China-Japan Friendship Hospital,National Clinical Research Center for Respiratory Diseases,Beijing 100029,China
  • Received:2024-12-26 Published:2025-02-15
  • Corresponding author: Yanbing Yu
引用本文:

张瑜廉, 党韩寒, 张传鹏, 何昆, 陈鹏宇, 张昀昇, 王在, 张黎, 于炎冰. 创伤性脑损伤急性期细胞焦亡关键分子的竞争性内源性RNA调控网络构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 5-16.

Yulian Zhang, Hanhan Dang, Chuanpeng Zhang, Kun He, Pengyu Chen, Yunsheng Zhang, Zai Wang, Li Zhang, Yanbing Yu. Construction and validation of ceRNA network for pyroptosis-related molecules during the acute phase of traumatic brain injury[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2025, 11(01): 5-16.

目的

探讨创伤性脑损伤(TBI)后细胞焦亡相关基因的时序表达特征,构建关键分子竞争性内源性RNA(ceRNA)网络,为进一步研究TBI急性期神经炎症的干预靶点提供新视角。

方法

建立控制性皮层撞击(CCI)小鼠模型,设置假手术组及TBI后不同时间点的分组,包括损伤后0、1、2、3、4、6、12 h及1、3、7 d(每组3只),进行转录组测序。采用Mfuzz聚类分析探索焦亡相关基因转录水平在TBI后的时序表达特征,筛选TBI后12 h组和假手术组差异表达的信使RNA(mRNA)和长链非编码RNA(lncRNA)。基于生物信息学方法通过“miRDB”、“Starbase”、“LncBase v3.0”数据库构建ceRNA网络,并通过单细胞数据集、逆转录定量聚合酶链反应验证表达水平及双萤光素酶报告基因检测验证关键分子的直接结合。

结果

TBI后焦亡相关基因呈现2种表达模式,即分别在TBI后12 h和3 d达到表达高峰。TBI 12 h组和假手术组的差异分析筛选出533个差异mRNA(432个上调,101个下调)及103个差异lncRNA(51个上调,52个下调),其中Caspase-4、白介素(IL)-1α、IL-1β和IL-6为核心焦亡mRNA。构建的ceRNA网络包含4个lncRNA(F630028O10Rik、F730311O21Rik、BE692007和Mir17hg)、16个microRNA(mmu-miR-466a-3p等)及4个核心焦亡mRNA(Caspase-4、IL-1α、IL-1β和IL-6)。单细胞数据集分析证实IL-1β在TBI急性期高表达[log2(FC)=3.072,P<0.05]。双萤光素酶报告基因检测验证了F630028O10Rik/mmu-miR-466a-3p、mmumiR-466a-3p/IL-1β的直接结合,F630028O10Rik-WT和IL-1β-WT的相对萤光素酶活性分别下降了16.5%和27.1%(P<0.05)。

结论

TBI后焦亡基因分为早期基因(12 h表达峰)和晚期基因(3 d表达峰),具有不同的功能。TBI后12 h焦亡相关的ceRNA网络显示IL-1β及其ceRNA调控轴(F630028O10Rik/miR-466a-3p/IL-1β)可能在TBI后急性期(12 h)的神经炎症中发挥核心作用,为TBI后急性期的干预靶点提供新的见解。

Objective

To explore the temporal expression patterns of genes related to pyroptosis after traumatic brain injury (TBI) and construct a key molecular competitive endogenous RNA (ceRNA)network,providing a new perspective for further studying intervention targets of neuroinflammation during the acute phase of TBI.

Methods

A controlled cortical impact (CCI) mouse model was established,and groups were set up for sham surgery and different time points after TBI,including 0,1,2,3,4,6,12 h and 1,3,7 d post-injury (n=3 per group) for transcriptome sequencing. Mfuzz clustering analysis was used to explore the temporal expression characteristics of pyroptosis-related genes at the transcriptional level after TBI. Messenger RNA (mRNA) and long non-coding RNA (lncRNA) differentially expressed between TBI 12 h group and sham surgery group were screened. Based on bioinformatics methods,a competitive endogenous RNA (ceRNA) network was constructed using the“miRDB”,“Starbase”,and“LncBase v3.0” databases. The expression levels were verified through a single-cell dataset and RT-qPCR,and the direct binding of key molecules was validated using a dual-luciferase reporter assay.

Results

Pyroptosis-related genes exhibited two expression patterns after TBI,which reach their peak expression at 12 h and 3 d after TBI,respectively. Differential analysis between TBI 12 h group surgery and sham group identified 533 differentially expressed mRNA (432 upregulated and 101 downregulated) and 103 differentially expressed lncRNAs (51 upregulated and 52 downregulated),with Caspase-4,interleukin (IL)-1α,IL-1β,and IL-6 emerging as core pyroptosis mRNAs. The constructed ceRNA network comprised 4 lncRNAs (F630028O10Rik,F730311O21Rik,BE692007,and Mir17Hg),16 microRNAs (including mmumiR-466a-3p,etc.),and 4 core pyroptosis mRNAs (Caspase-4,IL-1α,IL-1β,and IL-6). Single-cell dataset analysis confirmed the high expression of IL-1β during the acute phase of TBI. The dual-luciferase reporter gene assay verified the direct binding of F630028O10Rik/mmu-miR-466a-3p and mmu-miR-466a-3p/IL-1β. The relative luciferase activity of F630028O10Rik-WT and IL-1β-WT decreased by 16.5% and 27.1%,respectively (P<0.05).

Conclusion

The pyroptosis genes after TBI are divided into early genes (peak expression at 12 h) and late genes (peak expression at 3 d),which have different functions. A ceRNA network related to pyroptosis at 12 h after TBI was constructed,revealing that the IL-1β and its ceRNA regulatory axis (F630028O10Rik/miR-466a-3p/IL-1β) may play a central role in neuroinflammation during the acute phase (12 h) after TBI,providing new insights into intervention targets for the acute phase after TBI.

表1 用于RT-qPCR的引物序列
Tab.1 The primers sequence for RT-qPCR
图1 TBI后不同时间点基因表达模式分析 A:时间序列热图显示不同时间点的基因表达,以及不同基因簇的功能富集结果;B~C:代表性基因在12 h峰值(B)和3 d峰值(C)的时间表达曲线;Sham:假手术组;TBI:创伤性脑损伤
Fig.1 Analysis of gene expression patterns at different time points post-TBI
图2 TBI 12 h组和假手术组的差异和富集分析结果 A~B:TBI 12 h组和假手术组间的差异mRNA(A,n=533)和lncRNA(B,n=103)的火山图;C:GO富集的圈图;D:KEGG富集的气泡图;E:上调通路的GSEA富集分析;Sham:假手术组;TBI:创伤性脑损伤;mRNA:信使RNA;lncRNA:长链非编码RNA;GO:基因本体论;KEGG:京都基因与基因组百科全书;GSEA:基因集富集分析
Fig.2 Analysis of differences and enrichment between TBI 12 h group and sham surgery group
图3 大鼠TBI后12 h细胞焦亡相关ceRNA网络的构建 A:焦亡相关基因和差异mRNA的Venn图;B:4个关键mRNA和51个上调的lncRNA间的相关性热图;C:ceRNA网络图;TBI:创伤性脑损伤;lncRNA:长链非编码RNA;miRNA:微小RNA;mRNA:信使RNA;Caspase-4:半胱天冬氨酸酶4;IL-1α:白介素1α;L-1β:白介素1β;IL-6:白介素6;ceRNA:竞争性内源性RNA
Fig.3 Construction of the pyroptosis-related ceRNA network in mice at 12 h post-TBI
表2 动物水平RT-qPCR验证ceRNA网络中关键lncRNA和mRNA的相对表达(±s
Tab.2 Expression validation of key lncRNA and mRNA in ceRNA network by RT-qPCR at animal level (Mean±SD
表3 细胞水平RT-qPCR验证ceRNA网络中关键lncRNA和mRNA的相对表达(±s
Tab.3 Expression validation of key lncRNA and mRNA in ceRNA network by RT-qPCR at cell level (Mean±SD
图4 单细胞数据分析提示IL-1β为TBI后急性期的关键分子 A:主成分分析;B:细胞群注释基因;C:细胞群聚类分群情况;D:ceRNA网络中lncRNA和mRNA的表达;TBI:创伤性脑损伤;ceRNA:竞争性内源性RNA;lncRNA:长链非编码RNA;miRNA:信使RNA;Caspase-4:半胱天冬氨酸酶4;IL-6:白介素6;IL-1α:白介素1α;L-1β:白介素1β
Fig.4 Single-cell analysis identifies IL-1β as a key molecule in the acute phase of TBI
图5 IL-1β相关ceRNA位点的预测和功能分析 A:lncRNA F630028O10Rik、4种miRNA(mmu-miR-297b-3p、mmu-miR-466a-3p、mmu-miR-467g和mmu-miR-669d-3p)和IL-1β之间结合位点的预测;B~C:与F630028O10Rik表达高度相关的mRNA的富集分析结果(B:GO;C:KEGG);D:双萤光素酶报告基因检测F630028O10Rik/mmumiR-466a-3p/IL-1β轴的结合;WT:野生型;MT:突变型;aP<0.05;lncRNA:长链非编码RNA;miRNA:微小RNA;IL-1β:白介素1β;mRNA:信使RNA;IL-6:白介素6;GO:基因本体论;KEGG:京都基因与基因组百科全书;ceRNA:竞争性内源性RNA
Fig.5 Prediction and functional analysis of IL-1β-related ceRNA sites
[1]
Keating CE,Cullen DK. Mechanosensation in traumatic brain injury[J]. Neurobiol Dis,2021,148: 105210. DOI: 10.1016/j.nbd.2020.105210.
[2]
王燕,梁海乾,郭姗姗. 炎症小体在创伤性脑损伤中作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版),2024,14(3): 177-181. DOI: 10.3877/cma.j.issn.2095-123X.2024.03.009.Wang Y,Liang HQ,Guo SS. Research advances in role of inflammasome in traumatic brain injury[J]. Chin J Brain Dis Rehabil (Electronic Edition),2024,14(3): 177-181. DOI: 10.3877/cma.j.issn.2095-123X.2024.03.009.
[3]
潘冬生,梁国标. 颅脑创伤治疗的最新进展与未来趋势[J]. 中华神经创伤外科电子杂志,2024,10(4): 193-197. DOI: 10.3877/cma.j.issn.2095-9141.2024.04.001.Pan DS,Liang GB. Latest developments and future trends in the treatment of traumatic brain injury[J]. Chin J Neurotrauma Surg(Electronic Edition),2024,10(4): 193-197. DOI: 10.3877/cma.j.issn.2095-9141.2024.04.001.
[4]
Shi J,Zhao Y,Wang K,et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature,2015,526(7575): 660-665. DOI: 10.1038/nature15514.
[5]
Du H,Li CH,Gao RB,et al. Ablation of GSDMD attenuates neurological deficits and neuropathological alterations after traumatic brain injury[J]. Front Cell Neurosci,2022,16: 915969.DOI: 10.3389/fncel.2022.915969.
[6]
Hu X,Chen H,Xu H,et al. Role of pyroptosis in traumatic brain and spinal cord injuries[J]. Int J Biol Sci,2020,16(12): 2042-2050. DOI: 10.7150/ijbs.45467.
[7]
Zheng RZ,Lee KY,Qi ZX,et al. Neuroinflammation following traumatic brain injury: take it seriously or not[J]. Front Immunol,2022,13: 855701. DOI: 10.3389/fimmu.2022.855701.
[8]
Tay Y,Rinn J,Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature,2014,505(7483):344-352. DOI: 10.1038/nature12986.
[9]
Jiang YJ,Cao SQ,Gao LB,et al. Circular ribonucleic acid expression profile in mouse cortex after traumatic brain injury[J].J Neurotrauma,2019,36(7): 1018-1028. DOI: 10.1089/neu.2018.5647.
[10]
Wang S,Sun Y,Hu S,et al. Correction to: construction of a lncRNA-associated competing endogenous RNA regulatory network after traumatic brain injury in mouse[J]. Mol Brain,2022,15(1): 60. DOI: 10.1186/s13041-022-00950-7.
[11]
Yu J,Lu Z,Liu R,et al. Characterization of the lncRNA-miRNAmRNA regulatory network to reveal potential functional competing endogenous RNAs in traumatic brain injury[J]. Front Neurosci,2022,16: 1089857. DOI: 10.3389/fnins.2022.1089857.
[12]
Yang Z,Li X,Luo W,et al. The involvement of long non-coding RNA and messenger RNA based molecular networks and pathways in the subacute phase of traumatic brain injury in adult mice[J]. Front Neuroinform,2022,16: 794342. DOI: 10.3389/fninf.2022.794342.
[13]
Davis AE. Mechanisms of traumatic brain injury: biomechanical,structural and cellular considerations[J]. Crit Care Nurs Q,2000,23(3): 1-13. DOI: 10.1097/00002727-200011000-00002.
[14]
Masel BE,DeWitt DS. Traumatic brain injury: a disease process,not an event[J]. J Neurotrauma,2010,27(8): 1529-1540. DOI: 10.1089/neu.2010.1358.
[15]
Long X,Yao X,Jiang Q,et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury[J]. J Neuroinflammation,2020,17(1): 89. DOI: 10.1186/s12974-020-01761-0.
[16]
Bao Z,Liu Y,Chen B,et al. Prokineticin-2 prevents neuronal cell deaths in a model of traumatic brain injury[J]. Nat Commun,2021,12(1): 4220. DOI: 10.1038/s41467-021-24469-y.
[17]
Zhang Y,Zhang C,Yang Y,et al. Pyroptosis-related gene signature predicts prognosis and indicates immune microenvironment infiltration in glioma[J]. Front Cell Dev Biol,2022,10: 862493.DOI: 10.3389/fcell.2022.862493.
[18]
Shao W,Yang Z,Fu Y,et al. The pyroptosis-related signature predicts prognosis and indicates immune microenvironment infiltration in gastric cancer[J]. Front Cell Dev Biol,2021,9:676485. DOI: 10.3389/fcell.2021.676485.
[19]
Jha RM,Rajasundaram D,Sneiderman C,et al. A single-cell atlas deconstructs heterogeneity across multiple models in murine traumatic brain injury and identifies novel cell-specific targets[J]. Neuron,2024,112(18): 3069-3088. e4. DOI: 10.1016/j.neuron.2024. 06.021.
[20]
Hu C,Li T,Xu Y,et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data[J]. Nucleic Acids Res,2023,51(D1):D870-D876. DOI: 10.1093/nar/gkac947.
[21]
Rao Z,Zhu Y,Yang P,et al. Pyroptosis in inflammatory diseases and cancer[J]. Theranostics,2022,12(9): 4310-4329. DOI: 10.7150/thno.71086.
[22]
Xu S,Wang J,Jiang J,et al. TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury[J]. Cell Death Dis,2020,11(8): 693. DOI:10.1038/s41419-020-02824-z.
[23]
Ritzel RM,Li Y,Jiao Y,et al. Brain injury accelerates the onset of a reversible age-related microglial phenotype associated with inflammatory neurodegeneration[J]. Sci Adv,2023,9(10): eadd1101.DOI: 10.1126/sciadv.add1101.
[24]
赵慧婷,赵俊龙,李三中,等. 小胶质细胞在创伤性颅脑损伤后神经炎症调控及疾病治疗中的研究进展[J]. 中华神经医学杂志,2024,23(11): 1179-1187. DOI: 10.3760/cma.j.cn115354-20240912-00563.Zhao HT,Zhao JL,Li SS,et al. Recent advance in role of microglia in neuroinflammation regulation and disease treatment after traumatic brain injury[J]. Chin J Neuromed,2024,23(11):1179-1187. DOI: 10.3760/cma.j.cn115354-20240912-00563.
[1] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[2] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[3] 谢开晶, 张迅, 王耀丽. 创伤后脓毒症:不可忽视的严重并发症[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1048-1052.
[4] 张诚实, 陈荣荣, 秦二云, 张青, 刘明, 冯契靓, 赵云峰. 动态测定血浆长链非编码RNA SOX2-OT在COPD 相关性肺动脉高压患者中的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 895-900.
[5] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[6] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[7] 姬震震, 李志坚. 含半胱氨酸的天冬氨酸蛋白水解酶1介导细胞焦亡在眼科领域的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(05): 310-315.
[8] 李彦腾, 张剑宁. 轻型颅脑战创伤的诊治[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 1-4.
[9] 吕一帆, 张斌, 茆翔, 刘佰运, 高国一, 牛非. 定量蛋白质组学分析皮质酮对急性创伤性脑损伤的神经保护作用[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 17-25.
[10] 赵文兵, 朱细燕, 许民辉, 徐伦山, 赵辉. 高原环境下创伤性脑损伤院前救治的策略与实践[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 57-61.
[11] 刘昕, 张至君, 王绅, 张敏, 王如海, 彭丽, 张高健. 轻型创伤性脑损伤患者早期病情恶化的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(01): 31-37.
[12] 王如海, 王绅, 张敏, 李春, 韩超, 于强, 胡海成, 李习珍. 重型创伤性脑损伤患者去骨瓣减压术后短期死亡风险的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 285-291.
[13] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[14] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[15] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
阅读次数
全文


摘要