[1] |
冯康. 认知科学的发展及研究方向[J]. 计算机工程与科学, 2014, 36(5): 906-916.
|
[2] |
Wikenheiser AM, Schoenbaum G. Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex[J]. Nat Rev Neurosci, 2016, 17(8): 513-523.
|
[3] |
Graham DI, Adams JH, Nicoll JA, et al. The nature, distribution and causes of traumatic brain injury[J]. Brain Pathol, 1995, 5(4): 397-406.
|
[4] |
Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility-linking memory and mood[J]. Nat Rev Neurosci, 2017, 18(6): 335-346.
|
[5] |
Simon DW, McGeachy MJ, Bayir H, et al. The far-reaching scope of neuroinflammation after traumatic brain injury[J]. Nat Rev Neurol, 2017, 13(3): 171-191.
|
[6] |
Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury[J]. Exp Neurol, 2016, 275 Pt 3(3): 305-315.
|
[7] |
Hung CC, Chang CC, Huang CW, et al. Gut microbiota in patients with Alzheimer's disease spectrum: a systematic review and meta-analysis[J]. Aging (Albany NY), 2022, 14(1): 477-496.
|
[8] |
Busche MA, Hyman BT. Synergy between amyloid-beta and tau in Alzheimer's disease[J]. Nat Neurosci, 2020, 23(10): 1183-1193.
|
[9] |
Panza F, Lozupone M, Logroscino G, et al. A critical appraisal of amyloid-beta-targeting therapies for Alzheimer disease[J]. Nat Rev Neurol, 2019, 15(2): 73-88.
|
[10] |
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?[J]. Nat Rev Neurol, 2021, 17(3): 157-172.
|
[11] |
Pinheiro R, Coutinho AJ, Pinheiro M, et al. Nanoparticles for targeted brain drug delivery: what do we know? [J]. Int J Mol Sci, 2021, 22(21): 11654.
|
[12] |
Ji X, Li Q, Song H, et al. Protein-mimicking nanoparticles in biosystems[J]. Adv Mater, 2022, 34(37): e2201562.
|
[13] |
Poudel P, Park S. Recent advances in the treatment of Alzheimer's disease using nanoparticle-based drug delivery systems[J]. Pharmaceutics, 2022, 14(4): 835.
|
[14] |
Zhang T, Tian T, Zhou R, et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment[J]. Nat Protoc, 2020, 15(8): 2728-2757.
|
[15] |
Zhang T, Tian T, Lin Y. Functionalizing framework nucleic-acid-based nanostructures for biomedical application[J]. Advanced Materials, 2022, 34(46): 2107820.
|
[16] |
Yang X, Zhang F, Du Y, et al. Effect of tetrahedral DNA nanostructures on LPS-induced neuroinflammation in mice[J]. Chin Chem Lett, 2022, 33(4): 1901-1906.
|
[17] |
Zhou M, Zhang T, Zhang B, et al. A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting toll-like receptor 2 signaling pathway in acute ischemic stroke[J]. ACS Nano, 2022, 16(1): 1456-1470.
|
[18] |
Zhu J, Yang Y, Ma W, et al. Antiepilepticus effects of tetrahedral framework nucleic acid via inhibition of gliosis-induced downregulation of glutamine synthetase and increased AMPAR internalization in the postsynaptic membrane[J]. Nano Lett, 2022, 22(6): 2381-2390.
|
[19] |
Qin X, Xiao L, Li N, et al. Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages[J]. Bioact Mater, 2022, 14: 134-144.
|
[20] |
Fu W, You C, Ma L, et al. Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma[J]. ACS Appl Mater Interfaces, 2019, 11(43): 39525-39533.
|
[21] |
Wang Y, Jia W, Zhu J, et al. Tetrahedral framework nucleic acids promote cognitive impairment recovery post traumatic brain injury[J]. Chinese Chemical Letters, 2022: 107746.
|
[22] |
Wang Y, Zhu J, Jia W, et al. BACE1 Aptamer-modified tetrahedral framework nucleic acid to treat Alzheimer's disease in an APP-PS1 animal model[J]. ACS Appl Mater Interfaces, 2022, 14(39): 44228-44238.
|