切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2022, Vol. 08 ›› Issue (05) : 302 -306. doi: 10.3877/cma.j.issn.2095-9141.2022.05.009

综述

慢性创伤性脑病诊断相关标志物的研究进展
白壮壮1, 李东波1, 杨倩2,()   
  1. 1. 712046 咸阳,陕西中医药大学第二临床医学院
    2. 710038 西安,空军军医大学唐都医院实验外科
  • 收稿日期:2022-06-28 出版日期:2022-10-15
  • 通信作者: 杨倩
  • 基金资助:
    国家自然科学基金重点项目(31930048); 国家自然科学基金重点国际(地区)合作研究项目(81720108016)

Advances in diagnostic markers of chronic traumatic encephalopathy

Zhuangzhuang Bai1, Dongbo Li1, Qian Yang2,()   

  1. 1. The Second School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
    2. Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University, Xi'an 710038, China
  • Received:2022-06-28 Published:2022-10-15
  • Corresponding author: Qian Yang
引用本文:

白壮壮, 李东波, 杨倩. 慢性创伤性脑病诊断相关标志物的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 302-306.

Zhuangzhuang Bai, Dongbo Li, Qian Yang. Advances in diagnostic markers of chronic traumatic encephalopathy[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2022, 08(05): 302-306.

慢性创伤性脑病(CTE)是一种与头部反复创伤相关的神经退行性疾病,以脑内大量磷酸化Tau蛋白异常积聚为特征。CTE晚期可引起认知和行为功能障碍,甚至引起痴呆和自杀,严重影响患者的生活质量。目前,CTE缺乏客观的诊断标志物,导致临床诊断非常困难,通常只能依靠尸检进行确诊,给家庭和社会带来严重负担。CTE诊断相关生物标志物在评估损伤程度、早期诊断、制定治疗方案等方面具有重要临床价值。本文围绕与CTE诊断相关的脑脊液、血液及其他生物标志物进行综述,以期为早期诊断及临床治疗提供参考和借鉴。

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive head trauma, which characterized by abnormal accumulation of a large number of phosphorylated Tau protein in the brain. Severe cognitive and behavior disfunction, and even dementia or suicide may occur in later stages of CTE, which seriously impacts the life quality of patients. At present, clinical diagnosis of CTE is very difficult due to a lack of objective diagnostic biomarkers, and diagnosis can only be made by autopsy, putting a heavy burden on family and society. The biomarkers related to CTE diagnosis have important clinical value in assessing the degree of injury, early diagnosis, and treatment protocol decision-making, etc.. Therefore, this review was conducted by analyzing and summaring the cerebrospinal fluid blood and other related biomarkers associated with CTE diagnosis, in order to provide reference for early diagnosis and clinical treatment.

表1 慢性创伤性脑病诊断标志物
[1]
Mondello S, Schmid K, Berger RP, et al. The challenge of mild traumatic brain injury: role of biochemical markers in diagnosis of brain damage[J]. Med Res Rev, 2014, 34(3): 503-531.
[2]
Binney ZO, Bachynski KE. Estimating the prevalence at death of CTE neuropathology among professional football players[J]. Neurology, 2019, 92(1): 43-45.
[3]
McKee AC, Abdolmohammadi B, Stein TD. The neuropathology of chronic traumatic encephalopathy[J]. Handb Clin Neurol, 2018, 158: 297-307.
[4]
Mez J, Stern RA, McKee AC. Chronic traumatic encephalopathy[J]. Semin Neurol, 2020, 40(4): 351-352.
[5]
Changa AR, Vietrogoski RA, Carmel PW. Dr Harrison Martland and the history of punch drunk syndrome[J]. Brain, 2018, 141(1): 318-321.
[6]
Critchley M. Medical aspects of boxing, particularly from a neurological standpoint[J]. Br Med J, 1957: 1(5015): 357-362.
[7]
Stein TD, Alvarez VE, McKee AC. Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel[J]. Alzheimers Res Ther, 2014, 6(1): 4.
[8]
Corsellis JA, Bruton CJ, Freeman-Browne D. The aftermath of boxing[J]. Psychol Med, 1973, 3(3): 270-303.
[9]
陈伟成,蔡凯宇,陈君涵, 等. 规律运动对慢性创伤性脑病的改善效应及其机制[J]. 中华神经医学杂志, 2022, 21(3): 305-311.
[10]
McKee AC, Cairns NJ, Dickson DW, et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy[J]. Acta Neuropathol, 2016, 131(1): 75-86.
[11]
路旭,杨俊丽,王娜, 等. 慢性创伤性脑病研究进展[J]. 中华神经创伤外科电子杂志, 2020, 6(4): 244-247.
[12]
Muraoka S, Jedrychowski MP, Tatebe H, et al. Proteomic profiling of extracellular vesicles isolated from cerebrospinal fluid of former national football league players at risk for chronic traumatic encephalopathy[J]. Front Neurosci, 2019, 13: 1059.
[13]
Tran HT, LaFerla FM, Holtzman DM, et al. Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-β accumulation and independently accelerates the development of tau abnormalities[J]. J Neurosci, 2011, 31(26): 9513-9525.
[14]
Rubenstein R, Chang B, Yue JK, et al. Comparing plasma phospho Tau, total Tau, and phospho Tau-total Tau ratio as acute and chronic traumatic brain injury biomarkers[J]. JAMA Neurol, 2017, 74(9): 1063-1072.
[15]
Teunissen CE, Khalil M. Neurofilaments as biomarkers in multiple sclerosis[J]. Mult Scler, 2012, 18(5): 552-556.
[16]
Shahim P, Zetterberg H, Tegner Y, et al. Serum neurofilament light as a biomarker for mild traumatic brain injury in contact sports[J]. Neurology, 2017, 88(19): 1788-1794.
[17]
Dickstein DL, De Gasperi R, Gama Sosa MA, et al. Brain and blood biomarkers of tauopathy and neuronal injury in humans and rats with neurobehavioral syndromes following blast exposure[J]. Mol Psychiatry, 2021, 26(10): 5940-5954.
[18]
Zetterberg H, Blennow K. From cerebrospinal fluid to blood: the third wave of fluid biomarkers for Alzheimer's disease[J]. J Alzheimers Dis, 2018, 64(s1): S271-S279.
[19]
Tiwari S, Atluri V, Kaushik A, et al. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics[J]. Int J Nanomedicine, 2019, 14: 5541-5554.
[20]
Stein TD, Montenigro PH, Alvarez VE, et al. Beta-amyloid deposition in chronic traumatic encephalopathy[J]. Acta Neuropathol, 2015, 130(1): 21-34.
[21]
Ikonomovic MD, Mi Z, Abrahamson EE. Disordered APP metabolism and neurovasculature in trauma and aging: combined risks for chronic neurodegenerative disorders[J]. Ageing Res Rev, 2017, 34: 51-63.
[22]
Sass D, Guedes VA, Smith EG, et al. Sex differences in behavioral symptoms and the levels of circulating GFAP, Tau, and NfL in patients with traumatic brain injury[J]. Front Pharmacol, 2021, 12: 746491.
[23]
Yuan W, Lu L, Rao M, et al. GFAP hyperpalmitoylation exacerbates astrogliosis and neurodegenerative pathology in PPT1-deficient mice[J]. Proc Natl Acad Sci USA, 2021, 118(13): e2022261118.
[24]
Mondello S, Jeromin A, Buki A, et al. Glial neuronal ratio: a novel index for differentiating injury type in patients with severe traumatic brain injury[J]. J Neurotrauma, 2012, 29(6): 1096-1104.
[25]
Kleindienst A, Ross Bullock M. A critical analysis of the role of the neurotrophic protein S100B in acute brain injury[J]. J Neurotrauma, 2006, 23(8): 1185-200.
[26]
Esposito G, Scuderi C, Lu J, et al. S100B induces tau protein hyperphosphorylation via Dickopff-1 up-regulation and disrupts the Wnt pathway in human neural stem cells[J]. J Cell Mol Med, 2008, 12(3): 914-927.
[27]
Moreira GG, Cantrelle FX, Quezada A, et al. Dynamic interactions and Ca2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding[J]. Nat Commun, 2021, 12(1): 6292.
[28]
Grevfors N, Lindblad C, Nelson DW, et al. Delayed neurosurgical intervention in traumatic brain injury patients referred from primary hospitals is not associated with an unfavorable outcome[J]. Front Neurol, 2021, 11: 610192.
[29]
Riuzzi F, Chiappalupi S, Arcuri C, et al. S100 proteins in obesity: liaisons dangereuses[J]. Cell Mol Life Sci, 2020, 77(1): 129-147.
[30]
Ackermans NL, Varghese M, Wicinski B, et al. Unconventional animal models for traumatic brain injury and chronic traumatic encephalopathy[J]. J Neurosci Res, 2021, 99(10): 2463-2477.
[31]
Bazarian JJ, Biberthaler P, Welch RD, et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study[J]. Lancet Neurol, 2018, 17(9): 782-789.
[32]
Tate CM, Wang KK, Eonta S, et al. Serum brain biomarker level, neurocognitive performance, and self-reported symptom changes in soldiers repeatedly exposed to low-level blast: a breacher pilot study[J]. J Neurotrauma, 2013, 30(19): 1620-1630.
[33]
Posti JP, Hossain I, Takala RS, et al. Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 are not specific biomarkers for mild CT-negative traumatic brain injury[J]. J Neurotrauma, 2017, Epub ahead of print.
[34]
Chung-Esaki HM, Mui G, Mlynash M, et al. The neuron specific enolase (NSE) ratio offers benefits over absolute value thresholds in post-cardiac arrest coma prognosis[J]. J Clin Neurosci, 2018, 57: 99-104.
[35]
Kulbe JR, Geddes JW. Current status of fluid biomarkers in mild traumatic brain injury[J]. Exp Neurol, 2016, 275 Pt 3(3): 334-352.
[36]
Shahim P, Tegner Y, Wilson DH, et al. Blood biomarkers for brain injury in concussed professional ice hockey players[J]. JAMA Neurol, 2014, 71(6): 684-692.
[37]
Zhao Y, Jaber V, Alexandrov PN, et al. MicroRNA-based biomarkers in alzheimer's disease (AD)[J]. Front Neurosci, 2020, 14: 585432.
[38]
Ferrante M, Conti GO. Environment and neurodegenerative diseases: an update on miRNA role[J]. Microrna, 2017, 6(3): 157-165.
[39]
Mitra B, Rau TF, Surendran N, et al. Plasma micro-RNA biomarkers for diagnosis and prognosis after traumatic brain injury: a pilot study[J]. J Clin Neurosci, 2017, 38: 37-42.
[40]
LaRocca D, Barns S, Hicks SD, et al. Comparison of serum and saliva miRNAs for identification and characterization of mTBI in adult mixed martial arts fighters[J]. PLoS One, 2019, 14(1): e0207785.
[41]
Cherry JD, Tripodis Y, Alvarez VE, et al. Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy[J]. Acta Neuropathol Commun, 2016, 4(1): 112.
[42]
Chausse B, Kakimoto PA, Kann O. Microglia and lipids: how metabolism controls brain innate immunity[J]. Semin Cell Dev Biol, 2021, 112: 137-144.
[43]
Recasens M, Almolda B, Pérez-Clausell J, et al. Chronic exposure to IL-6 induces a desensitized phenotype of the microglia[J]. J Neuroinflammation, 2021, 18(1): 31.
[44]
Hugon J, Hourregue C, Cognat E, et al. Chronic traumatic encephalopathy. Neurochirurgie[J]. 2021, 67(3): 290-294.
[45]
Wilde EA, Hunter JV, Li X, et al. Chronic effects of boxing: diffusion tensor imaging and cognitive findings[J]. J Neurotrauma, 2016, 33(7): 672-680.
[46]
Palmqvist S, Schöll M, Strandberg O, et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity[J]. Nat Commun, 2017, 8(1): 1214.
[47]
Hansson O, Mormino EC. Is longitudinal tau PET ready for use in alzheimer's disease clinical trials?[J]. Brain, 2018, 141(5): 1241-1244.
[48]
Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia?[J]. Nat Rev Neurol, 2013, 9(4): 211-221.
[1] 韩夫, 王洪涛, 官浩, 计鹏, 胡晓龙, 佟琳, 张智, 陈俏华, 冯爱娜, 韩军涛, 胡大海. 臀上动脉穿支分叶肌皮瓣在骶尾部脊索瘤切除后创面修复中的应用[J]. 中华损伤与修复杂志(电子版), 2020, 15(04): 294-296.
[2] 魏春波, 万钢, 许东梅, 赵兴云, 袁柳凤, 吴焱, 伦文辉. 60例人类免疫缺陷病毒感染者/获得性免疫缺陷综合征合并神经梅毒患者临床和实验室特征[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(04): 254-260.
[3] 林爱清, 张璐, 成宝涛, 刘世政, 孙文青. 二代测序技术应用于脑脊液检测在结核性脑膜炎中的早期诊断价值[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(04): 291-295.
[4] 齐洪武, 刘岩松, 曾维俊, 张立钊, 郭洪均, 刘清石. 儿童创伤性脑损伤的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 121-124.
[5] 卢盛华, 徐晓健, 王学蛟, 高飞, 张斌, 葛芊芊, 杨梦石, 牛非, 董金千, 庄园, 刘佰运, 田润发. 氢水对小鼠闭合性轻型颅脑损伤后焦虑抑郁样行为的改善作用探讨[J]. 中华神经创伤外科电子杂志, 2021, 07(02): 68-74.
[6] 吴钟华, 龙连圣, 李夏良, 王伟, 施顺孝, 方文杰, 谢虎, 辛志成, 蒋超超, 盛文国, 于晓敏. 颅底探查和重建在急性颅脑损伤开颅术中的意义[J]. 中华神经创伤外科电子杂志, 2021, 07(02): 96-99.
[7] 路旭, 杨俊丽, 王娜, 周沁晔, 符锋. 慢性创伤性脑病研究进展[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 244-247.
[8] 周奋, 王辉, 刘成业, 林树楷, 刘珍, 曾坚锋, 乔卫东, 江振忠, 李钢. 槽型鞘脑穿刺针的设计及动物实验初步结果[J]. 中华神经创伤外科电子杂志, 2020, 06(03): 180-182.
[9] 许国文, 孙艳云, 韩振波, 魏玲, 李军, 陈永新, 赵洪亮, 宋金和, 韩华柱. 颅内动脉瘤术后并发颅内感染的临床因素分析[J]. 中华神经创伤外科电子杂志, 2020, 06(03): 161-165.
[10] 刘佰运. 复杂脑积水的鉴别与治疗[J]. 中华神经创伤外科电子杂志, 2019, 05(06): 321-324.
[11] 孙健, 樊明超, 王念, 孙加琳, 张爱文, 方巍. 脑脊液与血清利奈唑胺浓度监测指导颅内感染临床治疗的价值[J]. 中华重症医学电子杂志, 2020, 06(03): 292-295.
[12] 黄富, 刘康峰, 常婉贞, 赵振林, 唐瑜晨, 王国兴, 肖华. 蛛网膜下腔出血患者脑脊液神经元特异性烯醇化酶水平变化及临床意义[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(02): 97-100.
[13] 刘志敏, 吴毅, 梁仔. 脑脊液维生素D结合蛋白在脑膜炎中的水平及对临床治疗效果的影响[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(06): 364-367.
[14] 李秋琼, 薛静, 王敏, 陈芬, 肖美芳. NSE、SIL-2R、TNF-α检测对小儿病毒性脑膜炎与细菌性脑膜炎的诊断价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 303-307.
[15] 豆仁成, 娄燕. 外周血和脑脊液检测标志物早期诊断化脓性脑膜炎的研究进展[J]. 中华诊断学电子杂志, 2021, 09(02): 137-140.
阅读次数
全文


摘要