[1] |
Nguyen R, Fiest KM, Mcchesney J, et al. The International incidence of traumatic brain injury: a systematic review and meta-analysis[J]. Can J Neurol Sci, 2016, 43(6): 774-785.
|
[2] |
Halstead ME, Walter KD. American academy of pediatrics. Clinical report--sport-related concussion in children and adolescents[J]. Pediatrics, 2010, 126(3): 597-615.
|
[3] |
Cheng WH, Martens KM, Bashir A, et al. CHIMERA repetitive mild traumatic brain injury induces chronic behavioural and neuropathological phenotypes in wild-type and APP/PS1 mice[J]. Alzheimers Res Ther, 2019, 11(1): 6.
|
[4] |
Mckee AC, Cantu RC, Nowinski CJ, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury[J]. J Neuropathol Exp Neurol, 2009, 68(7): 709-735.
|
[5] |
Mannix R, Berglass J, Berkner J, et al. Chronic gliosis and behavioral deficits in mice following repetitive mild traumatic brain injury[J]. J Neurosurg, 2014, 121(6): 1342-1350.
|
[6] |
Shin N, Kim HG, Shin HJ, et al. Uncoupled endothelial nitric oxide synthase enhances p-Tau in chronic traumatic encephalopathy mouse model[J]. Antioxid Redox Signal, 2019, 30(13): 1601-1620.
|
[7] |
Broussard JI, Acion L, De Jesús-Cortés H, et al. Repeated mild traumatic brain injury produces neuroinflammation, anxiety-like behaviour and impaired spatial memory in mice[J]. Brain Inj, 2018, 32(1): 113-122.
|
[8] |
Chen H, Desai A, Kim HY. Repetitive closed-head impact model of engineered rotational acceleration induces long-term cognitive impairments with persistent astrogliosis and microgliosis in mice[J]. J Neurotrauma, 2017, 34(14): 2291-2302.
|
[9] |
Lindqvist D, Dhabhar FS, James SJ, et al. Oxidative stress, inflammation and treatment response in major depression[J]. Psychoneuroendocrinology, 2017, 76: 197-205.
|
[10] |
Goshen I, Kreisel T, Ben-Menachem-Zidon O, et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression[J]. Mol Psychiatry, 2008, 13(7): 717-728.
|
[11] |
Adler UC, Marques AH, Calil HM. Inflammatory aspects of depression[J]. Inflamm Allergy Drug Targets, 2008, 7(1): 19-23.
|
[12] |
Rehman SU, Ikram M, Ullah N, et al. Neurological enhancement effects of melatonin against brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration via AMPK/CREB signaling[J]. Cells, 2019, 8(7): 760.
|
[13] |
Han L, Tian R, Yan H, et al. Hydrogen-rich water protects against ischemic brain injury in rats by regulating calcium buffering proteins[J]. Brain Res, 2015, 1615: 129-138.
|
[14] |
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat Med, 2007, 13(6): 688-694.
|
[15] |
Yoneda T, Tomofuji T, Kunitomo M, et al. Preventive effects of drinking hydrogen-rich water on gingival oxidative stress and alveolar bone resorption in rats fed a high-fat diet[J]. Nutrients, 2017, 9(1): 64.
|
[16] |
Jackson K, Dressler N, Ben-Shushan RS, et al. Effects of alkaline-electrolyzed and hydrogen-rich water, in a high-fat-diet nonalcoholic fatty liver disease mouse model[J]. World J Gastroenterol, 2018, 24(45): 5095-5108.
|
[17] |
Acosta SA, Tajiri N, Shinozuka K, et al. Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model[J]. PLoS One, 2013, 8(1): e53376.
|
[18] |
Cao T, Thomas TC, Ziebell JM, et al. Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat[J]. Neuroscience, 2012, 225: 65-75.
|
[19] |
Schmidt RH, Scholten KJ, Maughan PH. Cognitive impairment and synaptosomal choline uptake in rats following impact acceleration injury[J]. J Neurotrauma, 2000, 17(12): 1129-1139.
|
[20] |
Spain A, Daumas S, Lifshitz J, et al. Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury[J]. J Neurotrauma, 2010, 27(8):1429-1438.
|
[21] |
Mckee AC, Stern RA, Nowinski CJ, et al. The spectrum of disease in chronic traumatic encephalopathy[J]. Brain, 2013, 136(Pt 1): 43-64.
|
[22] |
白若靖,高华斌,韩召利,等.小胶质细胞表型在反复轻度脑创伤模型大鼠中的变化研究[J].中华神经医学杂志, 2017, 16(3): 246-250.
|
[23] |
Marmarou A, Foda MA, van den Brink W, et al. A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics[J]. J Neurosurg, 1994, 80(2): 291-300.
|
[24] |
Kane MJ, Angoa-Pérez M, Briggs DI, et al. A mouse model of human repetitive mild traumatic brain injury[J]. J Neurosci Methods, 2012, 203(1): 41-49.
|
[25] |
Morin A, Mouzon B, Ferguson S, et al. Nilvadipine suppresses inflammation via inhibition of P-SYK and restores spatial memory deficits in a mouse model of repetitive mild TBI[J]. Acta Neuropathol Commun, 2020, 8(1): 166.
|
[26] |
Xu X, Cowan M, Beraldo F, et al. Repetitive mild traumatic brain injury in mice triggers a slowly developing cascade of long-term and persistent behavioral deficits and pathological changes[J]. Acta Neuropathol Commun, 2021, 9(1): 60.
|