[1] |
Belykh E, Shaffer KV, Lin C, et al. Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: delivering optical labels to brain tumors[J]. Front Oncol, 2020, 10: 739.
|
[2] |
Diaz RJ, Dios RR, Hattab EM, et al. Study of the biodistribution of fluorescein in glioma-infiltrated mouse brain and histopathological correlation of intraoperative findings in high-grade gliomas resected under fluorescein fluorescence guidance[J]. J Neurosurg, 2015, 122(6): 1360-1369.
|
[3] |
da Silva CE, da Silva VD, da Silva JL. Convexity meningiomas enhanced by sodium fluorescein[J]. Surg Neurol Int, 2014, 5: 3.
|
[4] |
Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial[J]. Lancet Oncol, 2006, 7(5): 392-401.
|
[5] |
Valdés PA, Jacobs V, Harris BT, et al. Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery[J]. J Neurosurg, 2015, 123(3): 771-780.
|
[6] |
Cho SS, Salinas R, Lee JYK. Indocyanine-Green for fluorescence-guided surgery of brain tumors: evidence, techniques, and practical experience[J]. Front Surg, 2019, 6: 11.
|
[7] |
Chen SC, Wang MC, Wang WH, et al. Fluorescence-assisted visualization of facial nerve during mastoidectomy: a novel technique for preventing iatrogenic facial paralysis[J]. Auris Nasus Larynx, 2015, 42(2): 113-118.
|
[8] |
Bömers JP, Danielsen ME, Schulz MK, et al. Sodium fluorescein shows high surgeon-reported usability in glioblastoma surgery[J]. Surgeon, 2020, 18(6): 344-348.
|
[9] |
Valdés PA, Roberts DW, Lu FK, et al. Optical technologies for intraoperative neurosurgical guidance[J]. Neurosurg Focus, 2016, 40(3): E8.
|
[10] |
Suero Molina E, Ewelt C, Warneke N, et al. Dual labeling with 5-aminolevulinic acid and fluorescein in high-grade glioma surgery with a prototype filter system built into a neurosurgical microscope: technical note[J]. J Neurosurg, 2019, 132(6): 1724-1730.
|
[11] |
Raffa G, Picht T, Angileri FF, et al. Surgery of malignant motor-eloquent gliomas guided by sodium-fluorescein and navigated transcranial magnetic stimulation: a novel technique to increase the maximal safe resection[J]. J Neurosurg Sci, 2019, 63(6): 670-678.
|
[12] |
Charalampaki P, Proskynitopoulos PJ, Heimann A, et al. 5-aminolevulinic acid multispectral imaging for the fluorescence-guided resection of brain tumors: a prospective observational study[J]. Front Oncol, 2020, 10: 1069.
|
[13] |
Grabowski MM, Recinos PF, Nowacki AS, et al. Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma[J]. J Neurosurg, 2014, 121(5): 1115-1123.
|
[14] |
Valli D, Belykh E, Zhao X, et al. Development of a simulation model for fluorescence-guided brain tumor surgery[J]. Front Oncol, 2019, 9: 748.
|
[15] |
Almenawer SA, Badhiwala JH, Alhazzani W, et al. Biopsy versus partial versus gross total resection in older patients with high-grade glioma: a systematic review and meta-analysis[J]. Neuro Oncol, 2015, 17(6): 868-881.
|
[16] |
Neira JA, Ung TH, Sims JS, et al. Aggressive resection at the infiltrative margins of glioblastoma facilitated by intraoperative fluorescein guidance[J]. J Neurosurg, 2017, 127(1): 111-122.
|
[17] |
Xiang Y, Zhu XP, Zhao JN, et al. Blood-brain barrier disruption, sodium fluorescein, and fluorescence-guided surgery of gliomas[J]. Br J Neurosurg, 2018, 32(2): 141-148.
|
[18] |
Höhne J, Schebesch KM, de Laurentis C, et al. Fluorescein sodium in the surgical treatment of recurrent glioblastoma multiforme[J]. World Neurosurg, 2019, 125: e158-e164.
|
[19] |
Höhne J, Acerbi F, Falco J, et al. Lighting up the tumor-fluorescein-guided resection of gangliogliomas[J]. J Clin Med, 2020, 9(8): 2405.
|
[20] |
Kobayashi K, Ando K, Kato F, et al. MRI characteristics of spinal ependymoma in WHO grade II: a review of 59 cases[J]. Spine (Phila Pa 1976), 2018, 43(9): E525-E530.
|
[21] |
Acerbi F, Cavallo C, Schebesch KM, et al. Fluorescein-guided resection of intramedullary spinal cord tumors: results from a preliminary, multicentric, retrospective study[J]. World Neurosurg, 2017, 108: 603-609.
|
[22] |
Sun Z, Jing L, Fan Y, et al. Fluorescein-guided surgery for spinal gliomas: analysis of 220 consecutive cases[J]. Int Rev Neurobiol, 2020, 151: 139-154.
|
[23] |
Hojo M, Arakawa Y, Funaki T, et al. Usefulness of tumor blood flow imaging by intraoperative indocyanine green videoangiography in hemangioblastoma surgery[J]. World Neurosurg, 2014, 82(3-4): e495-e501.
|
[24] |
Verstegen MJT, Tummers QRJG, Schutte PJ, et al. Intraoperative identification of a normal pituitary gland and an adenoma using near-infrared fluorescence imaging and low-dose indocyanine green[J]. Oper Neurosurg (Hagerstown), 2016, 12(3): 260-268.
|
[25] |
Yokoyama J, Ishibashi K, Shiramizu H, et al. Impact of endoscopic indocyanine green fluorescence imaging on superselective intra-arterial chemotherapy for recurrent cancer of the skull base[J]. Anticancer Res, 2016, 36(7): 3419-3424.
|
[26] |
Bettag C, Hussein A, Behme D, et al. Endoscopic fluorescence-guided resection increases radicality in glioblastoma surgery[J]. Oper Neurosurg (Hagerstown), 2020, 18(1): 41-46.
|
[27] |
Strickland BA, Zada G. 5-ALA enhanced fluorescence-guided microscopic to endoscopic resection of deep frontal subcortical glioblastoma multiforme[J]. World Neurosurg, 2021, 148: 65.
|
[28] |
Hide T, Yano S, Shinojima N, et al. Usefulness of the indocyanine green fluorescence endoscope in endonasal transsphenoidal surgery[J]. J Neurosurg, 2015, 122(5): 1185-1192.
|
[29] |
Tsuzuki S, Aihara Y, Eguchi S, et al. Application of indocyanine green (ICG) fluorescence for endoscopic biopsy of intraventricular tumors[J]. Childs Nerv Syst, 2014, 30(4): 723-726.
|