切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2020, Vol. 06 ›› Issue (02) : 86 -90. doi: 10.3877/cma.j.issn.2095-9141.2020.02.005

所属专题: 文献

临床研究

经侧脑室引流管测压与有创颅内压监测的对比研究
方文华1, 许雅纹1, 蔡嘉伟1, 王芳玉1, 林章雅1, 林元相1, 康德智1,()   
  1. 1. 350005 福州,福建医科大学附属第一医院神经外科
  • 收稿日期:2020-02-27 出版日期:2020-04-15
  • 通信作者: 康德智
  • 基金资助:
    福建省科技计划引导性项目(2017Y0032); 福建医科大学启航基金项目(2016QH060)

A comparative study on the intracranial pressure monitoring through external ventricular drainage catheter and invasive sensor

Wenhua Fang1, Yawen Xu1, Jiawei Cai1, Fangyu Wang1, Zhangya Lin1, Yuanxiang Lin1, Dezhi Kang1,()   

  1. 1. Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
  • Received:2020-02-27 Published:2020-04-15
  • Corresponding author: Dezhi Kang
  • About author:
    Corresponding author: Kang Dezhi, Email:
引用本文:

方文华, 许雅纹, 蔡嘉伟, 王芳玉, 林章雅, 林元相, 康德智. 经侧脑室引流管测压与有创颅内压监测的对比研究[J]. 中华神经创伤外科电子杂志, 2020, 06(02): 86-90.

Wenhua Fang, Yawen Xu, Jiawei Cai, Fangyu Wang, Zhangya Lin, Yuanxiang Lin, Dezhi Kang. A comparative study on the intracranial pressure monitoring through external ventricular drainage catheter and invasive sensor[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2020, 06(02): 86-90.

目的

探讨经侧脑室引流管测压进行实时颅内压(ICP)监测的准确性和安全性。

方法

对福建医科大学附属第一医院神经外科自2016年1月至2018年6月收治的行脑室型有创ICP监测传感器置入术的28例患者,同时采用压力传感器连接侧脑室外引流管测量脑脊液传导压力(P1),通过临床监测数据采集软件系统每分钟实时采集P1和同期监测的有创ICP数据,每频段连续采集30 min,分析和对比2组数据的一致性。同时对患者的临床特征、颅内感染和浅表手术切口感染、颅内再出血等进行分析。

结果

28例患者共获得87个频段和2610对P1和ICP数值。有创ICP监测的平均值为(14.217±6.729)mmHg(1 mmHg=0.133 kPa),引流管测压P1的平均值为(14.263±6.765)mmHg,ICP与P1的组内相关系数(ICC)为0.977(P<0.001),具有较高的一致性。2组数据Band-Altman散点图显示P1与ICP的差值为(0.046±1.435)mmHg(95%CI:-2.767~2.859)。28例患者均未发生手术相关的颅内感染、浅表手术切口感染和愈合不良、颅内再出血等。

结论

经侧脑室引流管连接压力传感器测压与有创ICP传感器监测所得到的ICP值具有良好的一致性,其准确性和安全性较高,可作为持续监测ICP的有效技术。

Objective

To explore the feasibility and safety of real-time intracranial pressure(ICP) monitoring through the external ventricular drainage catheter.

Methods

Twenty-eight patients admitted to neurosurgery department in our hospital from January 2016 to June 2018 were enrolled in this study. The cerebro-spinal fluid conduction pressure (P1) was measured by a pressure sensor connected with the external ventricular drainage catheter, and the ICP data was measured by the invasive sensor at the same time. The real-time data of P1 and the ICP in the same period were collected by acquisition software system every minute. Then the data were collected continuously for 30 min in each section for analysis. The consistency of P1 and the ICP were analyzed and compared. The clinical characteristics, the incidence of intracranial infection, superficial surgical incision infection and intracranial rebleeding were analyzed.

Results

Twenty-eight patients were simultaneously monitored by pressure sensor connected with external ventricular drainage catheter and invasive ICP sensor. Eighty-seven section data and 2610 pairs of pressure values were obtained. The mean value of ICP was (14.217±6.729) mmHg (1 mmHg=0.133 kPa), while the mean value of P1 was (14.263±6.765) mmHg. The intraclass correlation coefficient (ICC) between P1 and ICP was 0.977 (P<0.001), suggesting high consistency of two groups of data. The difference between P1 and ICP was (0.046±1.435) mmHg (95%CI: -2.767-2.859). There were no operation-related intracranial infection, poor healing and incision infection, intracranial rebleeding between two data groups.

Conclusion

The pressure monitoring through external ventricular drainage catheter is highly consistent with invasive ICP sensor, with high accuracy and safety. This method may be used as an effective technique for continuous ICP monitoring.

图1 有创ICP监测和经引流管测压的比较
图2 典型病例诊疗过程的头颅CT表现
[1]
Chen CJ, Ding D, Ironside N, et al. Intracranial pressure monitoring in patients with spontaneous intracerebral hemorrhage[J]. J Neurosurg, 2019, Epub ahead of print.
[2]
Donnelly J, Czosnyka M, Adams H, et al. Twenty-five years of intracranial pressure monitoring after severe traumatic brain injury: a retrospective, single-center analysis[J]. Neurosurgery, 2019, 85(1): E75-E82.
[3]
张东,陈来照,梁宗星.颅内压监测临床研究现状及相关参数进展[J].中华神经创伤外科电子杂志, 2019, 5(4): 248-252.
[4]
Iencean S, Tascu A, Apetrei, C, et al. Continuous intracranial pressure monitoring in severe traumatic brain injury in children[J]. Romanian Neurosurgery, 2019, 33(2): 101-104.
[5]
D’Antona L, McHugh JA, Ricciardi F, et al. Association of intracranial pressure and spontaneous retinal venous pulsation[J]. JAMA Neurol, 2019, Epub ahead of print.
[6]
中华医学会神经外科学分会.神经外科重症管理专家共识(2013版)[J].中华医学杂志, 2013, 93(23): 1765-1779.
[7]
Harary M, Dolmans RGF, Gormley WB. Intracranial pressure monitoring-review and avenues for development[J]. Sensors (Basel), 2018, 18(2): E465.
[8]
Narayan V, Mohammed N, Savardekar AR, et al. Noninvasive intracranial pressure monitoring for severe traumatic brain injury in children: a concise update on current methods[J]. World Neurosurg, 2018, 114: 293-300.
[9]
Aiolfi A, Benjamin E, Khor D, et al. Brain trauma foundation guidelines for intracranial pressure monitoring: compliance and effect on outcome[J]. World J Surg, 2017, 41(6): 1543-1549.
[10]
Zhang X, Medow JE, Iskandar BJ, et al. Invasive and noninvasive means of measuring intracranial pressure: a review[J]. Physiol Meas, 2017, 38(8): R143-E182.
[11]
Chung DY, Olson DM, John S, et al. Evidence-based management of external ventricular drains[J]. Curr Neurol Neurosci Rep, 2019, 19(12): 94.
[12]
Chau CYC, Craven CL, Rubiano AM, et al. The evolution of the role of external ventricular drainage in traumatic brain injury[J]. J Clin Med, 2019, 8(9): E1422.
[13]
Olson DM, Ortega Perez S, Ramsay J, et al. Differentiate the source and site of intracranial pressure measurements using more precise nomenclature[J]. Neurocrit Care, 2019, 30(2): 239-243.
[14]
Hockel K, Schuhmann MU. ICP monitoring by open extraventricular drainage: common practice but not suitable for advanced neuromonitoring and prone to false negativity[J]. Acta Neurochir Suppl, 2018, 126: 281-286.
[15]
Olson DM, Batjer HH, Abdulkadir K, et al. Measuring and monitoring icp in neurocritical care: Results from a national practice survey[J]. Neurocrit Care, 2014, 20(1): 15-20.
[16]
Al-Tamimi YZ, Helmy A, Bavetta S, et al. Assessment of zero drift in the codman intracranial pressure monitor: a study from 2 neurointensive care units[J]. Neurosurgery, 2009, 64(1): 94-98; discussion 98-99.
[17]
Donnelly J, Czosnyka M, Adams H, et al. Twenty-five years of intracranial pressure monitoring after severe traumatic brain injury: a retrospective, single-center analysis[J]. Neurosurgery, 2019, 85(1): E75-E82.
[18]
唐杰,姜学高,龚玉水,等.开颅术后颅内压监测下继发颅内感染的危险因素及防治措施[J].中华神经创伤外科电子杂志, 2018, 4(2): 85-88.
[1] 张付意, 侯现增, 汪建军, 辛涛. 有创颅内压监测靶向管控在重型颅脑损伤患者围术期应用价值分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 298-301.
[2] 沈军, 许文庆, 付彬, 郑相虎, 张静. 脑室外引流后穿刺道出血的危险因素分析[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 155-160.
[3] 魏宜功, 周焜, 陈光唐, 王诚, 刘窗溪. 颅内压监测下改良阶梯减压法结合去骨瓣减压治疗颅内高压的疗效分析[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 28-33.
[4] 阳建国, 钟兴明, 吴利平. 颅内压监测下控制性减压联合预缝式关颅在重型颅脑损伤手术中的作用探讨[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 265-269.
[5] 胡晓芳, 赵琳, 张尚明, 杨德晓, 王守森. 颅内压监测下降阶梯减压技术在创伤后脑疝患者术中的应用[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 254-256.
[6] 吴昊, 李云雷, 麦麦提力·米吉提, 买吾兰·艾沙, 陈烈兴, 马木提江·木尔提扎, 巴特·龚高昂, 朱国华. 颅内压监测在治疗非脑疝高血压脑出血中的应用及疗效分析[J]. 中华神经创伤外科电子杂志, 2020, 06(03): 151-155.
[7] 江基尧. 中国颅脑创伤诊治的未来[J]. 中华神经创伤外科电子杂志, 2019, 05(05): 257-259.
[8] 张东, 陈来照, 梁宗星. 颅内压监测临床研究现状及相关参数进展[J]. 中华神经创伤外科电子杂志, 2019, 05(04): 248-252.
[9] 吕学明, 段亦然, 赵振宇, 门学忠, 初晨宇, 王天助, 卢培刚, 袁绍纪. 后颅窝枕下减压术治疗大面积小脑梗死的预后分析[J]. 中华神经创伤外科电子杂志, 2018, 04(06): 363-366.
[10] 武孝刚, 王金标, 许少年, 袁杰, 张永明. 颅内压监测联合镇静镇痛治疗高血压脑出血破入脑室的疗效分析[J]. 中华神经创伤外科电子杂志, 2018, 04(04): 209-212.
[11] 唐杰, 姜学高, 龚玉水, 黄友基, 叶建华, 黄易, 黎建华. 开颅术后颅内压监测下继发颅内感染的危险因素及防治措施[J]. 中华神经创伤外科电子杂志, 2018, 04(02): 85-88.
[12] 陈晨, 徐宏, 李政, 韩杨云. 脑室内颅内压监测在重型颅脑损伤患者围术期的应用研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(03): 146-151.
[13] 张锐光, 曹西, 朱广富, 任新亮. 颅内压监测在急性颅脑创伤中的应用[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(05): 308-310.
[14] 张赛, 张仁坤, 符锋. 颅内压监测临床应用研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(03): 190-192.
[15] 杨树成, 张雪峰, 田风富, 郎立峰. 术中脑室外引流对Ⅳ~Ⅴ级破裂颅内动脉瘤的作用[J]. 中华脑血管病杂志(电子版), 2022, 16(03): 154-157.
阅读次数
全文


摘要