[1] |
Maercker A, Cloitre M, Bachem R, et al. Complex post-traumatic stress disorder[J]. Lancet, 2022, 400(10345): 60-72. DOI:10.1016/s0140-6736(22)00821-2.
|
[2] |
Shalev A, Liberzon I, Marmar C. Post-traumatic stress disorder[J].N Engl J Med, 2017, 376(25): 2459-2469. DOI: 10.1056/NEJMra 1612499.
|
[3] |
Facer-Irwin E, Karatzias T, Bird A, et al. PTSD and complex PTSD in sentenced male prisoners in the UK: prevalence, trauma antecedents, and psychiatric comorbidities[J]. Psychol Med, 2022,52(13): 2794-2804. DOI: 10.1017/s0033291720004936.
|
[4] |
Schein J, Houle C, Urganus A, et al. Prevalence of post-traumatic stress disorder in the United States: a systematic literature review[J]. Curr Med Res Opin, 2021, 37(12): 2151-2161. DOI: 10.1080/03007995.2021.1978417.
|
[5] |
Mao X, Luo P, Li F, et al. PTSD of Chinese nurses in the normalisation of COVID-19 pandemic prevention and control:prevalence and correlates[J]. J Glob Health, 2023, 13: 06033.DOI: 10.7189/jogh.13.06033.
|
[6] |
Shalev A, Cho D, Marmar CR. Neurobiology and treatment of posttraumatic stress disorder[J]. Am J Psychiatry, 2024, 181(8):705-719. DOI: 10.1176/appi.ajp.20240536.
|
[7] |
Hori H, Kim Y. Inflammation and post-traumatic stress disorder[J]. Psychiatry Clin Neurosci, 2019, 73(4): 143-153. DOI: 10.1111/pcn.12820.
|
[8] |
Daskalakis NP, Iatrou A, Chatzinakos C, et al. Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood[J]. Science, 2024, 384(6698): eadh3707. DOI: 10.1126/science.adh3707.
|
[9] |
Bonomi R, Hillmer AT, Woodcock E, et al. Microglia-mediated neuroimmune suppression in PTSD is associated with anhedonia[J]. Proc Natl Acad Sci USA, 2024, 121(35): e2406005121. DOI:10.1073/pnas.2406005121.
|
[10] |
Cornell J, Salinas S, Huang HY, et al. Microglia regulation of synaptic plasticity and learning and memory[J]. Neural Regen Res,2022, 17(4): 705-716. DOI: 10.4103/1673-5374.322423.
|
[11] |
李倩, 陈雨萌, 王煦焱, 等. 绞股蓝化学成分及其药理作用研究进展[J]. 辽宁中医药大学学报, 2025, 27(3): 104-112. DOI:10.13194/j.issn.1673-842X.2025.03.019.Li Q, Chen YM, Wang XY, et al. Research progress on the chemical composition and pharmacological effects of Jiaogulan(Fiveleaf Gynostemma Herb)[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2025, 27(3): 104-112. DOI: 10.13194/j.issn.1673-842X.2025.03.019.
|
[12] |
Zhou K, Zhang Y, Zhou Y, et al. Production of gypenoside XVII from ginsenoside Rb1 by enzymatic transformation and their antiinflammatory activity in vitro and in vivo[J]. Molecules, 2023, 28(19): 7001. DOI: 10.3390/molecules28197001.
|
[13] |
Xie W, Zhu T, Zhang S, et al. Protective effects of Gypenoside XVII against cerebral ischemia/reperfusion injury via SIRT1-FOXO3A-and Hif1a-BNIP3-mediated mitochondrial autophagy[J].J Transl Med, 2022, 20(1): 622. DOI: 10.1186/s12967-022-03830-9.
|
[14] |
Zhao Z, Yuan Y, Li S, et al. Natural compounds from herbs and nutraceuticals as glycogen synthase kinase-3β inhibitors in Alzheimer's disease treatment[J]. CNS Neurosci Ther, 2024, 30(8):e14885. DOI: 10.1111/cns.14885.
|
[15] |
Yamamoto S, Morinobu S, Takei S, et al. Single prolonged stress:toward an animal model of posttraumatic stress disorder[J].Depress Anxiety, 2009, 26(12): 1110-1117. DOI: 10.1002/da.20629.
|
[16] |
孙霄, 李志达, 郝广志, 等. 褪黑素对创伤后应激障碍大鼠下丘脑-垂体-肾上腺轴的影响[J]. 神经解剖学杂志, 2023, 39(6): 677-681. DOI: 10.16557/j.cnki.1000-7547.2023.06.009.Sun X, Li ZD, Hao GZ, et al. The effects of melatonin therapy on hypothalamic-pituitary-adrenal axis in rats with posttraumatic stress disorder[J]. Chin J Neuroanat, 2023, 39(6): 677-681. DOI:10.16557/j.cnki.1000-7547.2023.06.009.
|
[17] |
Li S, Liao Y, Dong Y, et al. Microglial deletion and inhibition alleviate behavior of post-traumatic stress disorder in mice[J]. J Neuroinflammation, 2021, 18(1): 7. DOI: 10.1186/s12974-020-02069-9.
|
[18] |
Michopoulos V, Powers A, Gillespie CF, et al. Inflammation in fear-and anxiety-based disorders: PTSD, GAD, and beyond[J].Neuropsychopharmacology, 2017, 42(1): 254-270. DOI: 10.1038/npp.2016.146.
|
[19] |
Tursich M, Neufeld RW, Frewen PA, et al. Association of trauma exposure with proinflammatory activity: a transdiagnostic metaanalysis[J]. Transl Psychiatry, 2014, 4(7): e413. DOI: 10.1038/tp.2014.56.
|
[20] |
Passos IC, Vasconcelos-Moreno MP, Costa LG, et al. Inflammatory markers in post-traumatic stress disorder: a systematic review,meta-analysis, and meta-regression[J]. Lancet Psychiatry, 2015, 2(11): 1002-1012. DOI: 10.1016/s2215-0366(15)00309-0.
|
[21] |
Rhein C, Apelt I, Werner F, et al. Paradoxical effect of antiinflammatory drugs on IL-6 mRNA expression in patients with PTSD during treatment[J]. J Neural Transm (Vienna), 2024, 131(7): 813-821. DOI: 10.1007/s00702-024-02770-6.
|
[22] |
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, et al.Central and peripheral immune dysregulation in posttraumatic stress disorder: convergent multi-omics evidence[J]. Biomedicines,2022, 10(5): 1107. DOI: 10.3390/biomedicines10051107.
|
[23] |
Patas K, Baker DG, Chrousos GP, et al. Inflammation in posttraumatic stress disorder: dysregulation or recalibration?[J].Curr Neuropharmacol, 2024, 22(4): 524-542. DOI: 10.2174/1570159x21666230807152051.
|
[24] |
Chen XD, Wei JX, Wang HY, et al. Effects and mechanisms of salidroside on the behavior of SPS-induced PTSD rats[J].Neuropharmacology, 2023, 240: 109728. DOI: 10.1016/j.neuropharm.2023.109728.
|
[25] |
Xie G, Gao X, Guo Q, et al. Cannabidiol ameliorates PTSD-like symptoms by inhibiting neuroinflammation through its action on CB2 receptors in the brain of male mice[J]. Brain Behav Immun,2024, 119: 945-964. DOI: 10.1016/j.bbi.2024.05.016.
|
[26] |
崔大勇, 王新, 张博. 小胶质细胞在颅脑损伤中免疫调控及对神经元的作用机制[J]. 中华神经创伤外科电子杂志, 2022, 8(1): 56-58. DOI: 10.3877/cma.j.issn.2095-9141.2022.01.012.Cui DY, Wang X, Zhang B. Immunoregulation of microglia in traumatic brain injury and the mechanism of action on neurons[J].Chin J Neurotrauma Surg (Electronic Edition), 2022, 8(1): 56-58.DOI: 10.3877/cma.j.issn.2095-9141.2022.01.012.
|
[27] |
Li J, Tong L, Schock BC, et al. Post-traumatic stress disorder:focus on neuroinflammation[J]. Mol Neurobiol, 2023, 60(7): 3963-3978. DOI: 10.1007/s12035-023-03320-z.
|
[28] |
Enomoto S, Kato TA. Involvement of microglia in disturbed fear memory regulation: possible microglial contribution to the pathophysiology of posttraumatic stress disorder[J]. Neurochem Int, 2021, 142: 104921. DOI: 10.1016/j.neuint.2020.104921.
|
[29] |
Tian Y, Liu B, Li Y, et al. Activation of RARα receptor attenuates neuroinflammation after SAH via promoting M1-to-M2 phenotypic polarization of microglia and regulating Mafb/Msr1/PI3K-Akt/NFκB pathway[J]. Front Immunol, 2022, 13: 839796. DOI: 10.3389/fimmu.2022.839796.
|
[30] |
Mockenhaupt K, Gonsiewski A, Kordula T. RelB and neuroinflammation[J]. Cells, 2021, 10(7): 1609. DOI: 10.3390/cells 10071609.
|
[31] |
Cai L, Gong Q, Qi L, et al. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway[J]. Cell Commun Signal, 2022, 20(1): 56.DOI: 10.1186/s12964-022-00862-y.
|
[32] |
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?[J]. Nat Rev Neurol,2021, 17(3): 157-172. DOI: 10.1038/s41582-020-00435-y.
|
[33] |
Yu H, Lin L, Zhang Z, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5(1): 209. DOI: 10.1038/s41392-020-00312-6.
|
[34] |
Sivandzade F, Prasad S, Bhalerao A, et al. NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders:molecular mechanisms and possible therapeutic approaches[J].Redox Biol, 2019, 21: 101059. DOI: 10.1016/j.redox.2018.11.017.
|
[35] |
Mattson MP, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders[J]. J Clin Invest, 2001, 107(3): 247-254. DOI: 10.1172/jci11916.
|
[36] |
Gupta S, Guleria RS. Involvement of nuclear factor-κB in inflammation and neuronal plasticity associated with post-traumatic stress disorder[J]. Cells, 2022, 11(13): 2034. DOI: 10.3390/cells 11132034.
|
[37] |
Yu Y, Wang M, Chen R, et al. Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury[J]. J Ginseng Res, 2021, 45(6): 642-653. DOI: 10.1016/j.jgr.2019.09.003.
|
[38] |
Li Y, Yang P, Meng R, et al. Multidimensional autophagy nanoregulator boosts Alzheimer's disease treatment by improving both extra/intraneuronal homeostasis[J]. Acta Pharm Sin B, 2024, 14(3): 1380-1399. DOI: 10.1016/j.apsb.2023.10.009.
|
[39] |
Zhang MM, Huo GM, Cheng J, et al. Gypenoside XVII, an active ingredient from gynostemma pentaphyllum, inhibits C3aRassociated synaptic pruning in stressed mice[J]. Nutrients, 2022,14(12): 2418. DOI: 10.3390/nu14122418.
|
[40] |
Wang J, Yu Y, Zhang H, et al. Gypenoside XVII attenuates renal ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress and NLRP3 inflammasome-triggered pyroptosis[J]. Eur J Pharmacol, 2024, 962: 176187. DOI: 10.1016/j.ejphar.2023.176187.
|
[41] |
Sun T, Duan L, Li J, et al. Gypenoside XVII protects against spinal cord injury in mice by regulating the microRNA-21-mediated PTEN/AKT/mTOR pathway[J]. Int J Mol Med, 2021, 48(2): 146.DOI: 10.3892/ijmm.2021.4979.
|