切换至 "中华医学电子期刊资源库"

中华神经创伤外科电子杂志 ›› 2025, Vol. 11 ›› Issue (02) : 94 -102. doi: 10.3877/cma.j.issn.2095-9141.2025.02.004

颅脑与神经功能修复

七叶胆苷17通过影响AKT/NF-κB介导的神经炎症改善大鼠创伤后应激障碍样行为
王淑莹1, 杨以太1, 李泽萌2, 任党利2, 王景景2, 陈月阳3, 张慧敏1, 孙洪涛1,()   
  1. 1. 301617 天津,天津中医药大学研究生院
    2. 300162 天津,中国人民武装警察部队特色医学中心神经创伤及修复研究所
    3. 730000 兰州,兰州大学第一临床医学院
  • 收稿日期:2024-11-18 出版日期:2025-04-15
  • 通信作者: 孙洪涛
  • 基金资助:
    自主创新科学基金(KYZZCX2412)

GP-17 improves PTSD-like behaviour in rats by affecting AKT/NF-κB-mediated neuroinflammation

Shuying Wang1, Yitai Yang1, Zemeng Li2, Dangli Ren2, Jingjing Wang2, Yueyang Chen3, Huimin Zhang1, Hongtao Sun1,()   

  1. 1. Graduate School,Tianjin University of Traditional Chinese Medicine, Tianjin 301617,China
    2. Institute of Neurotrauma and Repair, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin 300162, China
    3. First Clinical Medical School of Lanzhou University, Lanzhou 730000, China
  • Received:2024-11-18 Published:2025-04-15
  • Corresponding author: Hongtao Sun
引用本文:

王淑莹, 杨以太, 李泽萌, 任党利, 王景景, 陈月阳, 张慧敏, 孙洪涛. 七叶胆苷17通过影响AKT/NF-κB介导的神经炎症改善大鼠创伤后应激障碍样行为[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 94-102.

Shuying Wang, Yitai Yang, Zemeng Li, Dangli Ren, Jingjing Wang, Yueyang Chen, Huimin Zhang, Hongtao Sun. GP-17 improves PTSD-like behaviour in rats by affecting AKT/NF-κB-mediated neuroinflammation[J/OL]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2025, 11(02): 94-102.

目的

探讨七叶胆苷17(GP-17)对创伤后应激障碍(PTSD)后神经炎症的影响,并初步探究其作用机制。

方法

选取24只8周龄雄性SD大鼠,按照随机数字法分为对照组、SPS组、GP-17低剂量组(1 mg/kg)、GP-17高剂量组(4 mg/kg),每组6只。除对照组以外,其余各组采取单一长时间应激法(SPS)建立PTSD模型,GP-17治疗组分别给予1、4 mg/kg腹腔注射,对照组和SPS组给予等量的生理盐水进行腹腔注射。SPS造模7 d后,通过拒俘评分和条件恐惧测试判断PTSD大鼠的恐惧情况,使用酶联免疫吸附测定(ELISA)试剂盒检测白介素(IL)-1β、IL-6、肿瘤坏死因子α(TNF-α)的蛋白表达,使用RT-qPCR检测上述炎症因子mRNA的表达,免疫荧光染色检测小胶质细胞极化标志物INOS的表达,Western blot检测通路相关蛋白磷酸化蛋白激酶B(p-AKT)、磷酸化核因子κB(p-P65)、磷酸化核因子-κB抑制蛋白激酶α/β(p-IKKα/β)的相对表达量。

结果

SPS造模7 d后,SPS组、GP-17低剂量组及高剂量组的拒俘评分、冻结时间较对照组显著升高,GP-17低剂量组和高剂量组的拒俘评分、冻结时间较SPS组明显降低,差异均有统计学意义(P<0.05)。ELISA和RT-qPCR结果显示,GP-17低、高剂量组大鼠造模后脑组织IL-1β、IL-6、TNF-α在mRNA及蛋白水平表达均低于SPS组,除GP-17低剂量组的IL-1β的表达外,其余组间炎症因子的表达差异均有统计学意义(P<0.05)。免疫荧光染色结果显示,GP-17低、高剂量组的小胶质细胞M1极化标志物INOS表达量较SPS组明显降低。Western blot检测结果显示,与SPS组比较,GP-17高剂量和低剂量组的p-IKKα/β、p-AKT、p-P65的表达水平均降低,除GP-17低剂量组的p-IKKα/β的表达外,其余组间蛋白表达差异均有统计学意义(P<0.05)。

结论

GP-17能减轻PTSD大鼠的惊恐行为,抑制前额叶皮层中IL-1β、IL-6、TNF-α的表达,同时能够抑制BV2细胞中M1型标志物INOS的表达,起保护神经功能的作用,其作用机制可能与抑制AKT/核因子-κB炎症通路介导的神经炎症有关。

Objective

To investigate the effect of gypenoside ⅩⅦ (GP-17) on neuroinflammation after post-traumatic stress disorder (PTSD) and explore its mechanism of action.

Methods

Twenty-four 8-week-old male SD rats were randomly divided into Control group, SPS group, GP-17 low-dose group(1 mg/kg), and GP-17 high-dose group (4 mg/kg), with 6 rats in each group. A single prolonged stress(SPS) modelling was carried out in all groups except Control group, followed by intraperitoneal injection of 1, 4 mg/kg in GP-17 treatment group, and equal amount of saline was given intraperitoneally in Control group as well as in SPS group. After 7 d of SPS modeling, the fear status of PTSD rats was assessed using a capture refusal score and a fear condition test. Enzyme linked immunosorbent assay (ELISA) kit was used to detect the protein expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNF-α),RT-qPCR was used to detect the mRNA expression of the above inflammatory factors. Immunofluorescence staining was used to detect the expression of microglial polarization marker INOS. Western blot was used to detect the relative expression levels of pathway related proteins phospho-protein kinase B (p-AKT),phospho-nuclear factor kappa B (p-P65), and phospho-inhibitor of nuclear factor-κB kinase α/β (p-IKKα/β).

Results

After 7 d of SPS modeling, the refusal score and freezing time of SPS group, GP-17 low-dose group, and high-dose group were significantly higher than those of the control group. The refusal score and freezing time of the GP-17 low-dose group and high-dose group were significantly lower than those of the SPS group, and the differences were statistically significant (P<0.05). ELISA and RT-qPCR results showed that the expression of IL-1β, IL-6, and TNF-α in the brain tissue of GP-17 low-dose and highdose groups after modeling was lower than that of SPS group at the RNA and protein levels (P<0.05), with the exception of IL-1β expression in the low-dose GP-17 group (P>0.05). Immunofluorescence results showed that the expression of the M1 polarization marker INOS in microglia in GP-17 low-dose and highdose groups was significantly lower than that in SPS group (P<0.05). Western blot results showed that compared with the SPS group, the expression levels of p-IKKα/β, p-AKT, and p-P65 were significantly decreased in both GP-17 high-dose group and low-dose groups (P<0.05), with the exception of the expression level of p-IKKα/β in the GP-17 low-dose group (P>0.05).

Conclusions

GP-17 attenuates panic behaviour and inhibits the expression of IL-1β, IL-6 and TNF-α in prefrontal cortex of PTSD rats,and also inhibits the expression of M1-type marker INOS in BV2 cells, which exerts neuroprotective effects, and the mechanism of its action may be related to the inhibition of neuroinflammation mediated by the AKT/NF-κB inflammatory pathway.

表1 4组大鼠造模后拒俘评分和冻结时间比较
Tab.1 Comparison of rejection score and freezing time after modeling in 4 groups of rats
图1 4组大鼠前额叶皮层中IL-1β、IL-6、TNF-α浓度比较 A:IL-1β浓度;B:IL-6浓度;C:TNF-α浓度;与对照组比较,aP<0.05;与SPS组比较,bP<0.05;与GP-17低剂量组比较,cP<0.05;SPS:单一长时间应激;GP-17:七叶胆苷17;IL-1β:白介素1β;IL-6:白介素6;TNF-α:肿瘤坏死因子α
Fig.1 Comparison of the concentrations of IL-1β, IL-6, and TNF-α in the prefrontal cortex of four groups of rats
图2 4组大鼠前额叶皮层中IL-1β mRNA、IL-6 mRNA、TNF-α mRNA表达水平比较 A:IL-1β mRNA表达量;B:IL-6 mRNA表达量;C:TNF-α mRNA表达量;与对照组比较,aP<0.05;与SPS组比较,bP<0.05;与GP-17低剂量组比较,cP<0.05;SPS:单一长时间应激;GP-17:七叶胆苷17;IL-1β:白介素1β;IL-6:白介素6;TNF-α:肿瘤坏死因子α
Fig.2 Comparison of expression levels of IL-1β mRNA, IL-6 mRNA, and TNF-α mRNA in the prefrontal cortex of four groups of rats
图3 4组BV2细胞中小胶质细胞M1标志物INOS的表达量 DAPI:4',6-二脒基-2-苯基吲哚;Merge:合并;LPS:脂多糖;GP-17:七叶胆苷17;INOS:诱导型一氧化氮合酶
Fig.3 Expression levels of the M1 marker INOS in four groups of BV2 cells
图4 4组大鼠p-P65、p-AKT和p-IKKα/β蛋白表达量比较 A:Western blot电泳条带图;B:4组大鼠p-IKKα/β、p-AKT、p-P65蛋白定量比较结果;与对照组比较,aP<0.05;与SPS组比较,bP<0.05;SPS:单一长时间应激;GP-17:七叶胆苷17;p-IKKα/β:磷酸化核因子-κB抑制蛋白激酶α/β;p-AKT:磷酸化蛋白激酶B;p-P65:磷酸化核因子κB
Fig.4 Comparison of p-P65, p-AKT, and p-IKKα/β protein expression in 4 groups of rats
[1]
Maercker A, Cloitre M, Bachem R, et al. Complex post-traumatic stress disorder[J]. Lancet, 2022, 400(10345): 60-72. DOI:10.1016/s0140-6736(22)00821-2.
[2]
Shalev A, Liberzon I, Marmar C. Post-traumatic stress disorder[J].N Engl J Med, 2017, 376(25): 2459-2469. DOI: 10.1056/NEJMra 1612499.
[3]
Facer-Irwin E, Karatzias T, Bird A, et al. PTSD and complex PTSD in sentenced male prisoners in the UK: prevalence, trauma antecedents, and psychiatric comorbidities[J]. Psychol Med, 2022,52(13): 2794-2804. DOI: 10.1017/s0033291720004936.
[4]
Schein J, Houle C, Urganus A, et al. Prevalence of post-traumatic stress disorder in the United States: a systematic literature review[J]. Curr Med Res Opin, 2021, 37(12): 2151-2161. DOI: 10.1080/03007995.2021.1978417.
[5]
Mao X, Luo P, Li F, et al. PTSD of Chinese nurses in the normalisation of COVID-19 pandemic prevention and control:prevalence and correlates[J]. J Glob Health, 2023, 13: 06033.DOI: 10.7189/jogh.13.06033.
[6]
Shalev A, Cho D, Marmar CR. Neurobiology and treatment of posttraumatic stress disorder[J]. Am J Psychiatry, 2024, 181(8):705-719. DOI: 10.1176/appi.ajp.20240536.
[7]
Hori H, Kim Y. Inflammation and post-traumatic stress disorder[J]. Psychiatry Clin Neurosci, 2019, 73(4): 143-153. DOI: 10.1111/pcn.12820.
[8]
Daskalakis NP, Iatrou A, Chatzinakos C, et al. Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood[J]. Science, 2024, 384(6698): eadh3707. DOI: 10.1126/science.adh3707.
[9]
Bonomi R, Hillmer AT, Woodcock E, et al. Microglia-mediated neuroimmune suppression in PTSD is associated with anhedonia[J]. Proc Natl Acad Sci USA, 2024, 121(35): e2406005121. DOI:10.1073/pnas.2406005121.
[10]
Cornell J, Salinas S, Huang HY, et al. Microglia regulation of synaptic plasticity and learning and memory[J]. Neural Regen Res,2022, 17(4): 705-716. DOI: 10.4103/1673-5374.322423.
[11]
李倩, 陈雨萌, 王煦焱, 等. 绞股蓝化学成分及其药理作用研究进展[J]. 辽宁中医药大学学报, 2025, 27(3): 104-112. DOI:10.13194/j.issn.1673-842X.2025.03.019.Li Q, Chen YM, Wang XY, et al. Research progress on the chemical composition and pharmacological effects of Jiaogulan(Fiveleaf Gynostemma Herb)[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2025, 27(3): 104-112. DOI: 10.13194/j.issn.1673-842X.2025.03.019.
[12]
Zhou K, Zhang Y, Zhou Y, et al. Production of gypenoside XVII from ginsenoside Rb1 by enzymatic transformation and their antiinflammatory activity in vitro and in vivo[J]. Molecules, 2023, 28(19): 7001. DOI: 10.3390/molecules28197001.
[13]
Xie W, Zhu T, Zhang S, et al. Protective effects of Gypenoside XVII against cerebral ischemia/reperfusion injury via SIRT1-FOXO3A-and Hif1a-BNIP3-mediated mitochondrial autophagy[J].J Transl Med, 2022, 20(1): 622. DOI: 10.1186/s12967-022-03830-9.
[14]
Zhao Z, Yuan Y, Li S, et al. Natural compounds from herbs and nutraceuticals as glycogen synthase kinase-3β inhibitors in Alzheimer's disease treatment[J]. CNS Neurosci Ther, 2024, 30(8):e14885. DOI: 10.1111/cns.14885.
[15]
Yamamoto S, Morinobu S, Takei S, et al. Single prolonged stress:toward an animal model of posttraumatic stress disorder[J].Depress Anxiety, 2009, 26(12): 1110-1117. DOI: 10.1002/da.20629.
[16]
孙霄, 李志达, 郝广志, 等. 褪黑素对创伤后应激障碍大鼠下丘脑-垂体-肾上腺轴的影响[J]. 神经解剖学杂志, 2023, 39(6): 677-681. DOI: 10.16557/j.cnki.1000-7547.2023.06.009.Sun X, Li ZD, Hao GZ, et al. The effects of melatonin therapy on hypothalamic-pituitary-adrenal axis in rats with posttraumatic stress disorder[J]. Chin J Neuroanat, 2023, 39(6): 677-681. DOI:10.16557/j.cnki.1000-7547.2023.06.009.
[17]
Li S, Liao Y, Dong Y, et al. Microglial deletion and inhibition alleviate behavior of post-traumatic stress disorder in mice[J]. J Neuroinflammation, 2021, 18(1): 7. DOI: 10.1186/s12974-020-02069-9.
[18]
Michopoulos V, Powers A, Gillespie CF, et al. Inflammation in fear-and anxiety-based disorders: PTSD, GAD, and beyond[J].Neuropsychopharmacology, 2017, 42(1): 254-270. DOI: 10.1038/npp.2016.146.
[19]
Tursich M, Neufeld RW, Frewen PA, et al. Association of trauma exposure with proinflammatory activity: a transdiagnostic metaanalysis[J]. Transl Psychiatry, 2014, 4(7): e413. DOI: 10.1038/tp.2014.56.
[20]
Passos IC, Vasconcelos-Moreno MP, Costa LG, et al. Inflammatory markers in post-traumatic stress disorder: a systematic review,meta-analysis, and meta-regression[J]. Lancet Psychiatry, 2015, 2(11): 1002-1012. DOI: 10.1016/s2215-0366(15)00309-0.
[21]
Rhein C, Apelt I, Werner F, et al. Paradoxical effect of antiinflammatory drugs on IL-6 mRNA expression in patients with PTSD during treatment[J]. J Neural Transm (Vienna), 2024, 131(7): 813-821. DOI: 10.1007/s00702-024-02770-6.
[22]
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, et al.Central and peripheral immune dysregulation in posttraumatic stress disorder: convergent multi-omics evidence[J]. Biomedicines,2022, 10(5): 1107. DOI: 10.3390/biomedicines10051107.
[23]
Patas K, Baker DG, Chrousos GP, et al. Inflammation in posttraumatic stress disorder: dysregulation or recalibration?[J].Curr Neuropharmacol, 2024, 22(4): 524-542. DOI: 10.2174/1570159x21666230807152051.
[24]
Chen XD, Wei JX, Wang HY, et al. Effects and mechanisms of salidroside on the behavior of SPS-induced PTSD rats[J].Neuropharmacology, 2023, 240: 109728. DOI: 10.1016/j.neuropharm.2023.109728.
[25]
Xie G, Gao X, Guo Q, et al. Cannabidiol ameliorates PTSD-like symptoms by inhibiting neuroinflammation through its action on CB2 receptors in the brain of male mice[J]. Brain Behav Immun,2024, 119: 945-964. DOI: 10.1016/j.bbi.2024.05.016.
[26]
崔大勇, 王新, 张博. 小胶质细胞在颅脑损伤中免疫调控及对神经元的作用机制[J]. 中华神经创伤外科电子杂志, 2022, 8(1): 56-58. DOI: 10.3877/cma.j.issn.2095-9141.2022.01.012.Cui DY, Wang X, Zhang B. Immunoregulation of microglia in traumatic brain injury and the mechanism of action on neurons[J].Chin J Neurotrauma Surg (Electronic Edition), 2022, 8(1): 56-58.DOI: 10.3877/cma.j.issn.2095-9141.2022.01.012.
[27]
Li J, Tong L, Schock BC, et al. Post-traumatic stress disorder:focus on neuroinflammation[J]. Mol Neurobiol, 2023, 60(7): 3963-3978. DOI: 10.1007/s12035-023-03320-z.
[28]
Enomoto S, Kato TA. Involvement of microglia in disturbed fear memory regulation: possible microglial contribution to the pathophysiology of posttraumatic stress disorder[J]. Neurochem Int, 2021, 142: 104921. DOI: 10.1016/j.neuint.2020.104921.
[29]
Tian Y, Liu B, Li Y, et al. Activation of RARα receptor attenuates neuroinflammation after SAH via promoting M1-to-M2 phenotypic polarization of microglia and regulating Mafb/Msr1/PI3K-Akt/NFκB pathway[J]. Front Immunol, 2022, 13: 839796. DOI: 10.3389/fimmu.2022.839796.
[30]
Mockenhaupt K, Gonsiewski A, Kordula T. RelB and neuroinflammation[J]. Cells, 2021, 10(7): 1609. DOI: 10.3390/cells 10071609.
[31]
Cai L, Gong Q, Qi L, et al. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway[J]. Cell Commun Signal, 2022, 20(1): 56.DOI: 10.1186/s12964-022-00862-y.
[32]
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?[J]. Nat Rev Neurol,2021, 17(3): 157-172. DOI: 10.1038/s41582-020-00435-y.
[33]
Yu H, Lin L, Zhang Z, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5(1): 209. DOI: 10.1038/s41392-020-00312-6.
[34]
Sivandzade F, Prasad S, Bhalerao A, et al. NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders:molecular mechanisms and possible therapeutic approaches[J].Redox Biol, 2019, 21: 101059. DOI: 10.1016/j.redox.2018.11.017.
[35]
Mattson MP, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders[J]. J Clin Invest, 2001, 107(3): 247-254. DOI: 10.1172/jci11916.
[36]
Gupta S, Guleria RS. Involvement of nuclear factor-κB in inflammation and neuronal plasticity associated with post-traumatic stress disorder[J]. Cells, 2022, 11(13): 2034. DOI: 10.3390/cells 11132034.
[37]
Yu Y, Wang M, Chen R, et al. Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury[J]. J Ginseng Res, 2021, 45(6): 642-653. DOI: 10.1016/j.jgr.2019.09.003.
[38]
Li Y, Yang P, Meng R, et al. Multidimensional autophagy nanoregulator boosts Alzheimer's disease treatment by improving both extra/intraneuronal homeostasis[J]. Acta Pharm Sin B, 2024, 14(3): 1380-1399. DOI: 10.1016/j.apsb.2023.10.009.
[39]
Zhang MM, Huo GM, Cheng J, et al. Gypenoside XVII, an active ingredient from gynostemma pentaphyllum, inhibits C3aRassociated synaptic pruning in stressed mice[J]. Nutrients, 2022,14(12): 2418. DOI: 10.3390/nu14122418.
[40]
Wang J, Yu Y, Zhang H, et al. Gypenoside XVII attenuates renal ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress and NLRP3 inflammasome-triggered pyroptosis[J]. Eur J Pharmacol, 2024, 962: 176187. DOI: 10.1016/j.ejphar.2023.176187.
[41]
Sun T, Duan L, Li J, et al. Gypenoside XVII protects against spinal cord injury in mice by regulating the microRNA-21-mediated PTEN/AKT/mTOR pathway[J]. Int J Mol Med, 2021, 48(2): 146.DOI: 10.3892/ijmm.2021.4979.
[1] 徐航程, 王佳玉. PI3K/AKT/mTOR 信号通路及其靶向治疗在乳腺癌中的应用[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 12-19.
[2] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[3] 刘锐, 郭思佳, 井维斌, 马明明, 曹卫红. 人源性脂肪干细胞对30%体表总面积Ⅲ度烫伤大鼠肺组织炎症反应的影响及其机制初步探讨[J/OL]. 中华危重症医学杂志(电子版), 2022, 15(06): 441-447.
[4] 徐纪文, 徐静雅, 宗斌, 马爽. COPD并发肺部感染TLR4/NF-κB通路与细胞因子水平及意义[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(02): 221-223.
[5] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[6] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[7] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[8] 马行远, 孙洪涛, 王景景, 任党利, 李泽萌, 丁晓, 张宇航, 邓廷桢, 陈月阳, 王淑莹, 杨以太, 王贺孔, 郑茂华. GRP75在创伤性颅脑损伤所致神经炎症中的机制研究[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 75-85.
[9] 张瑜廉, 党韩寒, 张传鹏, 何昆, 陈鹏宇, 张昀昇, 王在, 张黎, 于炎冰. 创伤性脑损伤急性期细胞焦亡关键分子的竞争性内源性RNA调控网络构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 5-16.
[10] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[11] 唐春雨, 李倩, 郭姗姗, 叶奇, 张丹. 创伤性颅脑损伤神经生理学特征[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 367-371.
[12] 栾恒钰, 赛晓勇. 创伤后应激障碍的治疗现状及研究进展[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(02): 112-118.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J/OL]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?